Correction Procedure for MTVZA-GYa Georeference

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper presents a description of an approach that makes it possible to control the quality of the MTVZA-GYa georeferencing and determine the optimal values of the corrective parameters. The analysis of the data of this instrument showed that the main contribution to the georeferencing errors are made by the angles of roll, pitch and yaw, which determine the mismatch between the instrumental coordinate system and the spacecraft coordinate system. In this regard, an iterative algorithm for detecting these angles was proposed, where the difference in measurements on the ascending and descending orbit half-passes of the MTVZA-GYa was used as the minimized function. As a result of applying this algorithm to the results of measurements of the MTVZA-GYa for 2020, the average values of the correcting roll, pitch and yaw angles of this instrument were calculated. The following values were found: (–0.84 ± 0.15)° for yaw angle, (–0.44 ± 0.14)° for roll angle and (+1.13 ± 0.05)° for the pitch angle. It was shown that the introduction of these angles into the MTVZA-GYa georeferencing procedure can significantly reduce its errors. Thus, the average discrepancy between coastlines borrowed from high-precision geographic databases and reconstructed from radiometric portraits is 4.5 km when georeferencing is performed using this correction angles.

About the authors

I. N. Sadovsky

Space Research Institute

Author for correspondence.
Email: ilya_nik_sad@mail.ru
Russia, Moscow

D. S. Sazonov

Space Research Institute

Email: ilya_nik_sad@mail.ru
Russia, Moscow

References

  1. Барсуков И.А., Болдырев В.В., Гаврилов М.И., Евсеев Г.Е., Егоров А.Н., Ильгасов П.А., Панцов В.Ю., Стрельников Н.И., Стрельцов А.М., Черный И.В., Чернявский Г.М., Яковлев В.В. Спутниковая СВЧ-радиометрия для решения задач дистанционного зондирования Земли// Ракетно-косм. приборостроение и информац. системы. 2021. Т. 8. Вып. 1. С. 11–23.
  2. Ермаков Д.М., Кузьмин А.В., Мазуров А.А., Пашинов Е.В., Садовский И.Н., Сазонов Д.С., Стерлядкин В.В., Чернушич А.П., Черный И.В., Стрельцов А.М., Шарков Е.А., Екимов Н.С. Концепция потоковой обработки данных российских спутниковых СВЧ-радиометров серии МТВЗА на базе ЦКП “ИКИ-Мониторинг"// Современные проблемы дистанционного зондирования Земли из космоса. 2021. Т. 18. № 4. С. 298–303.https://doi.org/10.21046/2070-7401-2021-18-4-298-303
  3. Садовский И.Н. Корректировка географической привязки данных микроволнового сканера-зондировщика МТВЗА-ГЯ // Материалы 19-й Международ. конф. “Современные проблемы дистанционного зондирования Земли из космоса”. 15–19 нояб. 2021, ИКИ РАН, Москва. 2021. С. 58. https://doi.org/10.21046/19DZZconf-2021a.
  4. Садовский И.Н., Сазонов Д.С.(2022а) Географическая привязка данных дистанционных радиометрических измерений МТВЗА-ГЯ// Исслед. Земли из космоса. 2022. Т. 202. № 6. С. 101–112. https://doi.org/10.31857/S0205961422060100
  5. Садовский И.Н., Сазонов Д.С. (2022б) Повышение точности географической привязки данных измерений МТВЗА-ГЯ // Материалы 20-й Международной конференции “Современные проблемы дистанционного зондирования Земли из космоса”. 14–18 нояб. 2022, ИКИ РАН, Москва. 2022. С. 63. https://doi.org/10.21046/20DZZconf-2022a.
  6. Han Y., Weng F., Zou X., Yang H., Scott D. Characterization of geolocation accuracy of Suomi NPP Advanced Technology Microwave Sounder measurements// J. Geophysical Research: Atmospheres. 2016. V. 121. P. 4933–4950. https://doi.org/10.1002/2015JD024278
  7. Moradi I., Meng H., Ferraro R.R., Bilanow S. Correcting Geolocation Errors for Microwave Instruments Aboard NOAA Satellites // IEEE Trans. Geoscience and Remote Sensing. 2013. V. 51. Iss. 6. P. 3625–2637.https://doi.org/10.1109/TGRS.2012.2225840
  8. Poe G.A., Uliana E.A., Gardiner B.A., von Rentzell T.E., Kunkee D.B. Geolocation Error Analysis of the Special Sensor Microwave Imager/Sounder// IEEE Trans. Geoscience and Remote Sensing.2008.V. 46. Iss. 4. P. 913–922.https://doi.org/10.1109/TGRS.2008.917981
  9. Purdy W.E., Gaiser P.W., Poe G.A., Uliana E.A., MeissnerT., Wentz F.J. Geolocation and Pointing Accuracy Analysis for the WindSat Sensor // IEEE Trans. Geoscience and Remote Sensing.2006.V. 44. Iss. 3. P. 496–505.https://doi.org/10.1109/TGRS.2005.858415
  10. Wiebe H., Heygste G., Meyer-Lerbs L. Geolocation of AMSR-E data// IEEE Trans. Geoscience and Remote Sensing.2008.V. 46. Iss. 10. P. 3098–3103.https://doi.org/10.1109/TGRS.2008.919272
  11. Zhou J., Yang H., Anderson K. SNPP ATMS On-Orbit Geolocation Error Evaluation and Correction Algorithm // IEEE Trans. Geoscience and Remote Sensing.2019. V. 57. Iss. 6. P. 3802–3812.https://doi.org/10.1109/TGRS.2018.2887407

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (320KB)
3.

Download (85KB)
4.

Download (298KB)
5.

Download (503KB)
6.

Download (338KB)
7.

Download (177KB)
8.

Download (216KB)

Copyright (c) 2023 И.Н. Садовский, Д.С. Сазонов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies