Molecular Dynamics Modeling of the Grade E Borosilicate Glass Structure Using a Crystal Structural Template

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new method for molecular dynamics (MD) modeling of the glass structure using a crystal structural template is proposed. The template is based on the unit cell of the crystalline phase, whose composition is qualitatively similar to the modeled glass. Using this approach and multistage MD simulation, the model of the spatial structure of grade E borosilicate glass, reproducing its physicochemical characteristics, is obtained. The proposed method enables to model the glass structure using classical MD methods with greater productivity and stability.

About the authors

G. I. Makarov

South Ural State University, 454080, Chelyabinsk, Russia

Email: makarovgi@susu.ru
Россия, 454080, Челябинск, пр. Ленина, 76

T. M. Makarova

South Ural State University, 454080, Chelyabinsk, Russia

Author for correspondence.
Email: makarovgi@susu.ru
Россия, 454080, Челябинск, пр. Ленина, 76

References

  1. Christie J., Ainsworth R., Hernandez S., De Leeuw N. Structures and properties of phosphate-based bioactive glasses from computer simulation: a review // J. Mater. Chem. B. 2017. V. 5. P. 5297–5306.
  2. Cormack A.N., Yuan X., Park B. Molecular Dynamics Simulations of Silicate Glasses and Melts // Glass Physics and Chemistry. 2001. V. 27. P. 28–36.
  3. Liang J.-J., Cygan R., Alam T. Molecular dynamics simulation of the structure and properties of lithium phosphate glasses // J. Non–Cryst. Solids. 2000. V. 263–264. P. 167–179.
  4. Jia B., Li M., Yan X., Wang Q., He S. Structure investigation of CaO–SiO2–Al2O3–Li2O by molecular dynamics simulation and Raman spectroscopy // J. Non–Cryst. Solids. 2019. V. 526. P. 119 695.
  5. Hu Y.-J., Zhao G., Zhang M., Bin B., Rose T.D., Zhao Q., Zu Q., Chen Y., Sun X. Predicting densities and elastic moduli of SiO2–based glasses by machine learning // npj Computational Materials. 2020. V. 6. P. 1–13.
  6. Deng B., Harris J.T. A novel approach to generate glass-ceramics samples for molecular dynamics simulations // Comput. Mater. Sci. 2021. V. 186. P. 110008.
  7. Hong X., Newville M. Polyamorphism of GeO2 Glass at High Pressure // Phys. Status Solidi B. 2020. V. 257. P. 2000052.
  8. Brazhkin V.V.,Lyapin A.G.,Trachenko K. Atomistic modeling of multiple amorphous-amorphous transitions in SiO2 and GeO2 glasses at megabar pressures // Phys. Rev. B. 2011. V. 83. P. 132 103.
  9. Tsuchiya T., Yamanaka T., Matsui M. Molecular dynamics study of pressure–induced transformation of quartz–type GeO2 // Phys. Chem. Miner. 2000. V. 27. P. 149–155.
  10. Kapoor S., Goel A., Tilocca A., Dhuna V., Bhatia G., Dhuna K., Ferreira J.M. Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co–doped alkali–free phosphosilicate glasses // Acta Biomater. 2014. V. 10. P. 3264–3278.
  11. Upadhyay A., Sebeck K., Kieffer J. Spectral mode assignment for binary silicate glasses using molecular dynamics simulations // J. Non–Cryst. Solids. 2012. V. 358. P. 3348–3354.
  12. Chainikova A., Orlova L., Popovich N., Lebedeva Y., Solncev S. Functional composites based on glass/glass–ceramics matrixes and discrete fillers: properties and possible applications // Aviation Materials and Technologies, 2014. V. 0. P. 52–58.
  13. Wang X., Xie W., Ren J., Zhu J., Li L.-Y., Xing F. Interfacial Binding Energy between Calcium–Silicate–Hydrates and Epoxy Resin: A Molecular Dynamics Study // Polymers. 2021. V. 13. P. 1683.
  14. Бабаевский П.Г. Наполнители для полимерных композиционных материалов: Справочное пособие. М.: Химия, 1981. 736 с.
  15. Mishnev M., Korolev A., Ekaterina B., Dmitrii U. Effect of Long-Term Thermal Relaxation of Epoxy Binder on Thermoelasticity of Fiberglass Plastics: Multiscale Modeling and Experiments // Polymers. 2022. V. 14. P. 1712.
  16. Maslov V., Grozdov A., Kutepov D. Methods of determining the composition of low–molecular weight epoxide diane resins // Polym. Sci. (USSR). 1982. V. 24. P. 2034–2039.
  17. Vaitkus A., Merkys A., Gražulis S. Validation of the Crystallography Open Database using the Crystallographic Information Framework // J. Appl. Crystallogr. 2021. V. 54. P. 661–672.
  18. Abraham M.J., Murtola T., Schulz R., Pall S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi–level parallelism from laptops to supercomputers // Software X. 2015. V. 1–2. P. 19–25.
  19. Макаров Г.И., Шилкова К.С., Шунайлов А.В., Павлов П.В., Макарова Т.М. Набор самосогласованных параметров потенциала Леннард–Джонса для молекулярно-динамического моделирования боросиликатных стекол // Физика и химия стекла. 2023. V. 49. P. 401–416.
  20. Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling // J. Chem. Phys. 2007. V. 126. P. 014107–014106.
  21. Berendsen H., Postma J., van Gunsteren W., DiNola A., Haak J. Molecular dynamics with coupling to an external bath // J. Chem. Phys. 1984. V. 81. P. 3684–3690.
  22. Darden T., York D., Pedersen L. Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems // J. Chem. Phys. 1993. V. 98. P. 10089–10092.
  23. Wennberg C.L., Murtola T., Hess B., Lindahl E. Lennard–Jones Lattice Summation in Bilayer Simulations Has Critical Effects on Surface Tension and Lipid Properties // J. Chem. Theory Comput. 2013. V. 9. P. 3527–3537.
  24. Gale J., Rohl A. The General Utility Lattice Program (GULP) // Mol. Simul. 2003. V. 29. P. 291–341.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (929KB)

Copyright (c) 2023 Г.И. Макаров, Т.М. Макарова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies