Sol-Gel Synthesis of Nanosized Powders and Obtaining Ceramic Composites Based on Zircon and Zirconium Oxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nanosized precursor powders of (1 – x)ZrSiO4‒xZrO(OH)2 are synthesized by the sol-gel method with the separate precipitation of components to obtain (1 – x)ZrSiO4‒xZrO2 ceramic composites. The thermal behavior of precursor powders is studied by differential scanning calorimetry and thermogravimetry (DSC/TG). Ceramic composites with a high level of microhardness are obtained by sintering powders, preliminarily calcined at 850°C, in air in the temperature range 1000‒1300°C. In the future, such ceramic composites can be used as matrices for solidification and isolating high-level waste (HLW).

About the authors

V. L. Ugolkov

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034, St. Petersburg, Russia

Email: ugolkov.52@mail.ru
Россия, 199034, Санкт-Петербург, наб. Макарова, 2

N. A. Koval’chuk

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034, St. Petersburg, Russia

Email: ugolkov.52@mail.ru
Россия, 199034, Санкт-Петербург, наб. Макарова, 2

A. V. Osipov

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034, St. Petersburg, Russia

Email: ugolkov.52@mail.ru
Россия, 199034, Санкт-Петербург, наб. Макарова, 2

L. P. Mezentseva

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, 199034, St. Petersburg, Russia

Author for correspondence.
Email: la_mez@mail.ru
Россия, 199034, Санкт-Петербург, наб. Макарова, д. 2

References

  1. Grechanovsky A.E., Urusov V.S., Eremin N.N. Molecular dynamics study of self-radiation damage in mineral matrices // J. Struct. Chem. 2016. V. 57. № 6. P. 1243–1262.
  2. Ferriss E.D.A., Ewing R.C., Becker U. Simulation of thermodynamic mixing properties of actinide-containing zircon solid solutions // Am. Mineralog. 2010. V. 95. P. 229–241.
  3. Burakov B.E., Anderson E.B., Rovsha V.S., Ushakov S.V., Ewing R.C., Lutze W., Weber W.J. Synthesis of zircon for immobilization of actinides // Mrs. Proc. 2011. V. 412. P. 33–39.
  4. Williford R.E., Begg B.D., Weber W.J., Hess N.J. Computer simulation of Pu3+ and Pu4+ substitutions in zircon // J. Nucl. Mater. 2000. V. 278. № 2–3. P. 207–211.
  5. Wang L., Liang T. Ceramics for high level radioactive waste solidification // J. Adv. Ceramics. 2012. V. 1. № 3. P. 194–203.
  6. Ding Y., Lu X., Dan H., Shu X., Zhang S., Duan T. Phase evolution and chemical durability of Nd-doped zircon ceramics designed to immobilize trivalent actinides // Ceram. Int. 2015. V. 41. № 8. P. 10044–10050.
  7. Ding Y., Lu X., Tu H., Shu X., Dan H., Zhang S., Duan T. Phase evolution and microstructure studies on Nd3+ and Ce4+ co-doped zircon ceramics // J. Eur. Ceram. Soc. 2015. V. 35. № 7. P. 2153–2161.
  8. Burakov B.E., Anderson E.B., Zamoryanskaya M.V., Yagovkina M.A., Strykanova E.E., Nikolaeva E.V. Synthesis and study of 239Pu-doped ceramics based on zircon, (Zr,Pu)SiO4, and hafnon, (Hf,Pu)SiO4 // Mat. Res. Soc., Sym. Proc. Scientific Basis for Nuclear Waste Management XXIV. 2001. V. 663. P. 307‒313.
  9. Hanchar J.M., Burakov B.E., Zamoryanskaya M.V., Garbuzov V.M., Kitsay A.A., Zirlin V.A. Investigation of Pu incorporated into zircon single crystal // Mat. Res. Soc., Symp. Proc. Scientific Basis for Nuclear Waste Management XXVIII. 2004. V. 824. P. 225‒229.
  10. Orlova A.I., Ojovan M.I. Ceramic mineral waste-forms for nuclear waste immobilization // Materials. 2019. V. 12. № 16. Article number 2638 (45 p.)
  11. Анциферов В.Н., Кульметьева В.Б., Порозова С.Е., Крохалева Е.Г. Влияние нанодисперсного диоксида циркония на процессы консолидации и свойства цирконовой кепамики // Новые огнеупоры. 2011. № 4. С. 35‒38.
  12. Ding Y., Jiang Z., Li Y., Tang Y., Li J., Dong X., Dan H., Yang Y., Duan T. Low temperature and rapid preparation of zirconia/zircon (ZrO2/ZrSiO4) composite ceramics by a hydrothermal-assisted sol-gel process // J. Alloys Compd. 2018. V. 735. P. 2190–2196.
  13. Rendtorff N.M., Grasso S., Hu C., Suarez G., Aglietti E.F., Sakka Y. Zircon-zirconia (ZrSiO4–ZrO2) dense ceramic composites by spark plasma sintering // J. Eur. Ceram. Soc. 2012. V. 32. № 4. P. 787–793.
  14. Rendtorff N.M., Grasso S., Hu C., Suarez G., Aglietti E.F., Sakka Y. Dense zircon (ZrSiO4) ceramics by high energy ball milling and spark plasma sintering // Ceram. Int. 2012. V. 38. № 3. P. 1793–1799.
  15. Thandalam S.K., Ramanathan S., Sundarrajan S. Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO4) reinforced Metal Matrix Composites (MMCs): A review // J. Mater. Res. Tech. 2015. V. 4. № 3. P. 333–347.
  16. Мезенцева Л.П., Кручинина И.Ю., Осипов А.В., Уголков В.Л., Попова В.Ф., Лапенок А.Ю. Влияние особенностей синтеза на физико-химические свойства нанопорошков и керамических образцов ортофосфатов РЗЭ // Физ. хим. стекла. 2015. Т. 41. № 6. С. 903–907.
  17. Fedorenko N.Y., Abiev R.S., Kudryashova Y.S., Ugolkov V.L., Khamova T.V., Zdravkov A.V., Kalinina M.V., Shilova O.A., Mjakin S.V. Comparative study of zirconia based powders prepared by co-precipitation and in a microreactor with impinging swirled flows // Ceram. Int. 2022. V. 49. № 9. P. 13 006‒13 013.
  18. Mezentseva L., Osipov A., Ugolkov V., Kruchinina I., Maslennikova T., Koptelova L. Sol–gel synthesis of precursors and preparation of ceramic composites based on LaPO4 with Y2O3 and ZrO2 additions // J. Sol–Gel Sci. Technol. 2019. V. 92. № 2. P. 427‒441.
  19. Заплишный В.Н., Строганов А.М., Скородневская Л.А., Строганов В.М., Котляров И.С., Заводное В.С. Каталитический гидролиз алкоксисиланов и получение гидроизоляционных материалов на их основе // Химия и химическая технология. 1991. Т. 34. № 6. С. 4‒15.
  20. Мурашкевич А.Н., Камлюк Т.В., Жарский И.М. Получение пленок SiO2 золь-гель методом и их свойства // Труды Белорусского государственного технологического университета. Серия 3. Химия и технология неорганических веществ. 2003. Вып. XI. С. 92‒107.
  21. Rakhimova O.V., Magomedova O.S., Tsyganova T. Investigation of hydrolytic polycondensation in systems based on tetraethoxysilane by DK-spectrophotometry method // Glass Phys. Chem. 2019. V. 45. № 6. P. 419‒427.
  22. Xiong X.-B., Ni X.-Y., Li Y.-Y., Chu C.-C., Zou J.-Z., Zeng X.-R. A novel strategy for preparation of Si-HA coatings on C/C composites by chemical liquid vaporization deposition/hydrothermal treatments // Sci. Reports. 2016. V. 6. № 1. Article number 31309.
  23. Kwon S.Y., Jung I.-H. Critical evaluation and thermodynamic optimization of the CaO‒ZrO2 and SiO2‒ZrO2 systems // J. Europ. Ceram. Soc. 2017. V. 37. № 3. P. 1105–1116.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (68KB)
3.

Download (174KB)
4.

Download (163KB)
5.

Download (261KB)
6.

Download (230KB)
7.

Download (321KB)

Copyright (c) 2023 В.Л. Уголков, Н.А. Ковальчук, А.В. Осипов, Л.П. Мезенцева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies