Self-Consistent Set of Lennard–Jones Potential Parameters for Molecular Dynamics Simulations of Oxide Materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A forcefield for high-performance molecular dynamics (MD) simulation of inorganic oxide substances, including borosilicate glasses, based on a combination of electrostatic interactions with the 6–12 type of Lennard–Jones potentials is developed. The forcefield parameters are selected to reproduce the structures and bulk moduli of the binary oxides of a wide spectrum of elements. The proposed forcefield is able to accurate reproduce structures of minerals containing two to three types of cations during the MD simulations. Application of the 6–12 potential makes it possible to carry out simultaneous MD simulations of the organic and inorganic phases, for example, in modeling composite materials with mineral and glass fillers.

About the authors

G. I. Makarov

South Ural State University, 454080, Chelyabinsk, Russia

Email: makarovgi@susu.ru
Россия, 454080, Челябинск, пр. Ленина, 76

K. S. Shilkova

South Ural State University, 454080, Chelyabinsk, Russia

Email: makarovgi@susu.ru
Россия, 454080, Челябинск, пр. Ленина, 76

A. V. Shunailov

South Ural State University, 454080, Chelyabinsk, Russia

Email: makarovgi@susu.ru
Россия, 454080, Челябинск, пр. Ленина, 76

P. V. Pavlov

South Ural State University, 454080, Chelyabinsk, Russia

Email: makarovgi@susu.ru
Россия, 454080, Челябинск, пр. Ленина, 76

T. M. Makarova

South Ural State University, 454080, Chelyabinsk, Russia

Author for correspondence.
Email: makarovgi@susu.ru
Россия, 454080, Челябинск, пр. Ленина, 76

References

  1. Ma M., Li H., Xiong Y., Dong F. Rational design, synthesis, and application of silica/graphene-based nanocomposite: A review // Materials & Design, 2021. V. 198. P. 109367.
  2. van Beest B.W.H., Kramer G.J., van Santen R.A. Force fields for silicas and aluminophosphates based on ab initio calculations // Physical Review Letters. 1990. V. 64. P. 1955–1958.
  3. Hu Y.-J., Zhao G., Zhang M., Bin B., Del Rose T., Zhao Q., Zu Q., Chen Y., Sun X., de Jong M., Qi L. Predicting densities and elastic moduli of SiO2-based glasses by machine learning // npj Computational Materials, 2020. V. 6. P. 25.
  4. Goodman B.J. A Study of Vitrified Nuclear Wasteforms by Molecular Dynamics, Electron Microscopy and Raman Spectroscopy. University of Kent, 2015. Master thesis. 143 p.
  5. Pedone A., Malavasi G., Menziani M.C., Cormack A.N., Segre U. A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses // J. Physical Chemistry B. 2006. V. 110. P. 11780–11795.
  6. Mishnev M., Korolev A., Bartashevich E., Ulrikh D. Effect of long-term thermal relaxation of epoxy binder on thermoelasticity of fiberglass plastics: multiscale modeling and experiments // Polymers. V. 14. P. 1712.
  7. Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. Development and testing of a general amber force field // J. Comput. Chem. 2004. V. 25. P. 1157–1174.
  8. Soares T.A., Hünenberger P.H., Kastenholz M.A., Kräutler V., Lenz T., Lins R.D., Oostenbrink C., van Gunsteren W.F. An improved nucleic acid parameter set for the GROMOS force field // J. Comput. Chem., 2005. V. 26. P. 725–737.
  9. Vanommeslaeghe K., Raman E.P., MacKerell A.D. Jr. Automation of the CHARMM General Force Field (CGenFF) II: Assignment of bonded parameters and partial atomic charges // J. Chemical Information and Modeling. 2012. V. 52. P. 3155–3168.
  10. Wennberg C.L., Murtola T., Hess B., Lindahl E. Lennard–Jones lattice summation in bilayer simulations has critical effects on surface tension and lipid properties // J. Chem. Theory Comput. 2013. V. 9. P. 3527–3537.
  11. Heinz H., Lin T.-J., Mishra R.K., Emami F.S. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: The INTERFACE force field // Langmuir. 2013. V. 29. P. 1754–1765.
  12. Tsuneyuki S., Tsukada M., Aoki H., Matsui Y. First-principles interatomic potential of silica applied to molecular dynamics // Physical Review Letters, 1988. V. 61. P. 869–872.
  13. Vaitkus A., Merkys A., Gražulis S. Validation of the Crystallography Open Database using the Crystallographic Information Framework // J. Applied Crystallography, 2021. V. 54. P. 661–672.
  14. Smyth J.R., Jacobsen S.D., Hazen R.M. Comparative Crystal Chemistry of Dense Oxide Minerals // Reviews in Mineralogy and Geochemistry, 2000. V. 41. P. 157–186.
  15. Gale J.D., Rohl A.L. The General Utility Lattice Program (GULP) // Molecular Simulation, 2003. V. 29. P. 291–341.
  16. Abraham M., Murtola T., Schulz R., Páll S., Smith J., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers // SoftwareX, 2015. V. 1–2. P. 19–25.
  17. Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling // J. Chem. Phys. 2007. V. 126. P. 014101.
  18. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R. Molecular dynamics with coupling to an external bath // J. Chem. Phys. 1984. V. 81. P. 3684–3690.
  19. Diego Gatta G., Angel R.J., Rotiroti N., Carpenter M.A. High-pressure and low-temperature behaviour of trigonal kalsilite // Geophysical Research Abstracts, 2010. V. 12, EGU2010-12321.
  20. Darden T., York D., Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems // J. Chem. Phys. 1993. V. 98. P. 10 089–10 092.
  21. Wennberg C.L., Murtola T., Hess B., Lindahl E. Lennard–Jones Lattice Summation in Bilayer Simulations Has Critical Effects on Surface Tension and Lipid Properties // J. Chem. Theory Comput. 2013. V. 9. P. 3527–3537.
  22. Shelby J.E. Introduction to Glass Science and Technology // Royal Society of Chemistry, 2 ed. 2007.
  23. Lipinska-Kalita K.E., Kalita P., Hemmers O., Hartmann T. Equation of state of gallium oxide to 70 GPa: Comparison of quasihydrostatic and nonhydrostatic compression // Physical Review B. 2008. V. 77. P. 094123.
  24. Barzilai S., Halevy I., Yeheskel O. Bulk modulus of Sc2O3: Ab initio calculations and experimental results // J. Applied Physics, 2011. V. 110. P. 043 532.
  25. Palko J.W., Waltraud W.M., Sinogeikin S.V., Bass J.D., Sayir A. Elastic constants of yttria (Y2O3) monocrystals to high temperatures // J. Applied Physics, 2001. V. 89. P. 7791–7796.
  26. Materials Data on Na2SiO3 by Materials Project // LBNL Materials Project; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States), 2020.
  27. Bass J.D. Elasticity of Minerals, Glasses, and Melts // In: Mineral Physics and Crystallography: A Handbook of Physical Constants. 1995. Eds. Ahrens T. J. Washington: American Geophysical Union. P. 45–63.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (645KB)

Copyright (c) 2023 Г.И. Макаров, К.С. Шилкова, А.В. Шунайлов, П.В. Павлов, Т.М. Макарова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies