Tetrapyridineplatinum(II) Carboxylates: Synthesis and Crystal Structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A series of mono- and bimetallic cation-anionic complexes based on the [PtPy4]2+ cation with different single-charge anions of carboxylic acids (RCOO–) is synthesized and structurally characterized. A synthetic approach to the preparation of tetrapyridineplatinum complexes [PtPy4]2+ soluble in polar solvents from available reagents is developed. The reaction of tetrapyridineplatinum dichloride [PtPy4](Cl)2 with silver acetate or trifluoroacetate affords compounds [PtPy4](OOCMe)2·6H2O (I) and [PtPy4](OOCCF3)2· 2H2O (II) in the form of crystalline hydrates (CIF files CCDC nos. 2161100 and 2161101, respectively) in high yields. Other carboxylates can be prepared by the treatment of compound I with an excess of a stronger acid, for example, trifluoroacetic acid, with the formation of the corresponding complex trifluoroacetate [PtPy4](OOCCF3)2·4CF3COOH (IIa) (CIF file CCDC no. 2161102). Another method consists of the displacement of acetic acid with an excess of a lowly volatile acid, for example, pivalic acid, when [PtPy4](Piv)2· 5HPiv (III) is formed from the acid melt, and solvatomorph [PtPy4](Piv)2·4HPiv·3C6H12 (IIIa) (CIF files CCDC nos. 2161103 and 2161104, respectively) is formed in a cyclohexane medium. Heteroanionic heterometallic complex [PtPy4](OOCFc)(OOCMe) (IV) (CIF file CCDC no. 2161105) is shown to be formed by the reaction of complex I with ferrocenecarboxylic acid under mild conditions.

About the authors

I. A. Yakushev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: cs68@mail.ru
Россия, Москва

M. Yu. Nesterenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Higher Chemical College of the Russian Academy of Sciences, Mendeleev University of Chemical Technology of Russia, Moscow, Russia

Email: cs68@mail.ru
Россия, Москва; Россия, Москва

P. V. Dorovatovskii

National Research Center Kurchatov Institute, Moscow, Russia

Email: cs68@mail.ru
Россия, Москва

A. B. Kornev


Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia

Email: cs68@mail.ru
Россия, Черноголовка

A. D. Maksimova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Higher Chemical College of the Russian Academy of Sciences, Mendeleev University of Chemical Technology of Russia, Moscow, Russia

Email: cs68@mail.ru
Россия, Москва; Россия, Москва

A. S. Popova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Peoples’ Friendship University of Russia, Moscow, Russia

Email: cs68@mail.ru
Россия, Москва; Россия, Москва

N. V. Cherkashina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: cs68@mail.ru
Россия, Москва

A. V. Churakov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: cs68@mail.ru
Россия, Москва

M. N. Vargaftik

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: cs68@mail.ru
Россия, Москва

References

  1. Treese S.A., Pujado P.R., Jones D.S.J. Handbook of Petroleum Processing. Springer, 2015. P. 317.
  2. Song J.Y., Jang J.H., Chuang S., Joo J.M. // Bull. Korean Chem. Soc. 2021. V. 42. P. 489.
  3. Labinger J.A. // Chem. Rev. 2016. V. 117. № 13. P. 8483.
  4. Rosenberg B., Vancamp L., Krigas T. // Nature. 1965. V. 205. № 4972. P. 698.
  5. Connors R. Platinum Coordination Complexes in Cancer Chemotherapy. Springer-Verlag, 1974.
  6. Lippard S.J. Progress in Inorganic Chemistry. John Wiley & Sons, Inc., 1982. V. 29. 401 p.
  7. Yaru Li, Ziru Sun, Yujun Cui et al. // Bioorg. Chem. 2021. V. 107. Art. 104636.
  8. Vikse K.L., McIndoe J.S. // Pure Appl. Chem. 2015. V. 87. № 4. P. 361.
  9. Markov A.A., Yakushev I.A., Churakov A.V. et al. // Dokl. Phys. Chem. 2016. V. 468. № 1. P. 72.
  10. Radlik, M., Śrębowata, A., Juszczyk, W. et al. // Adsorption. 2019. V. 25. № 4. P. 843.
  11. Vana J., Bartacek J., Hanusek J. et al. // J. Org. Chem. 2019. V. 84. № 20. P. 12746.
  12. Stephenson T.A., Morehouse S.M., Powell A.R et al. // J. Chem. Soc. (Resumed). 1965. P. 3632.
  13. Skapski A.C., Smart M.L. // J. Chem. Soc. D. 1970. № 11. P. 658.
  14. Carrondo M.A.A.F. de C.T., Skapski A.C. // Chem. Commun. 1976. № 11. P. 410.
  15. Carrondo M.A.A.F. de C.T., Skapski A.C. // Acta Crystallogr. B. 1978. V. 34. P. 1857.
  16. Markov A.A., Yakushev I.A., Churakov A.V. et al. // Mendeleev Commun. 2019. V. 29. № 5. P. 489.
  17. Cherkashina N.V., Kochubey D.I., Kanazhevskiy V.V. // Inorg. Chem. 2014. V. 53. № 16. P. 8397.
  18. Cherkashina N.V., Churakov A.V., Yakushev I.A. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 4. P. 253. https://doi.org/10.1134/S107032841904002X
  19. Yakushev I.A., Stolarov I.P., Cherkashina N.V. et al. // Inorg. Chim. Acta. 2020. V. 508. P. 119631.
  20. Stolarov I.P., Cherkashina N.V., Yakushev I.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 507. https://doi.org/10.1134/S003602362004021X
  21. Cherkashina N.V., Nefedov S.E., Uvarova M.A. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 5. P. 446. https://doi.org/10.1134/S0036023614050076
  22. Perrin D.D., Armarego W.L.F. Purification of Laboratory Chemicals. Oxford: Pergamon, 1988. 544 p.
  23. Kauffman G.B. // Inorg. Synth. 1961. V. 7. P. 249.
  24. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. P. 1900184.
  25. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 125.
  26. APEX3, SAINT and SADABS. Madison (WI, USA): Bruker AXS Inc., 2016.
  27. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  28. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  29. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. A-ppl. Cryst. 2009. V. 42. P. 339.
  30. Carroll J., Gagnier J.P., Garner A.W. et al. // Organometallics. 2013. V. 32. № 17. P. 4828.
  31. Baddour F.G., Fiedler S.R., Shores M.P. et al. // Inorg. Chem. 2013. V. 52. № 9 . P. 4926.
  32. Umakoshi K., Kojima T., Saito K. et al. // Inorg. Chem. 2008. V. 47. № 12. P. 5033.
  33. Cherkashina N.V., Kozitsyna N.Y., Aleksandrov G.G. et al. // Mendeleev Commun. 2002. V. 12. № 2. P. 49.
  34. Gérbéléu N.V., Timko G.A., Indrichan K.M., Popovich G.A. // Theor. Exp. Chem. 1986. V. 22. № 3. P. 304.
  35. Wei C.H., Hingerty B.E., Busing W.R. // Acta Crysrtallog. C. 1989. V. 45. № 17. P. 26.
  36. Batsanov S.S. // Inorg. Mater. 2001. V. 37. № 9. P. 871.
  37. Lewis N.A., Pakhomova S., Marzilli P.A., Marzilli L.G. // Inorg. Chem. 2017. V. 56. № 16. P. 9781.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (488KB)
3.

Download (703KB)
4.

Download (496KB)
5.

Download (451KB)
6.

Download (776KB)
7.

Download (457KB)
8.

Download (443KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies