Synthesis, Structure, and Electron Density Distribution in Crystals of K2(L-Trp)2(H2O) (HTrp = Tryptophane)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The first salt of alkaline metal and L-tryptophane, K2(L-Trp)2(H2O) (I), is synthesized by the reaction of L-tryptophane (HTrp) with potassium hydroxide in an aqueous-alcohol solution. Compound I is characterized by IR and 1H NMR spectroscopy and X-ray diffraction (XRD) (CIF file CCDC no. 2184367). Compound I is found to have a layered structure due to the presence of the bridging water molecule and chelate-bridging anions. The quantum chemical calculations of the crystal structure (PBE, plane-wave basis set, 800 eV) is used to evaluate the strength of interactions of the potassium ion with the L-tryptophanate anion (depending on the coordination type) and the influence of the anion conformation on the strength of coordination, hydrophobic, and hydrophilic interactions.

About the authors

N. A. Bondareva

Samara National Research University, Samara, Russia

Email: vologzhanina@mail.ru
Россия, Самара

P. P. Purygin

Samara National Research University, Samara, Russia

Email: vologzhanina@mail.ru
Россия, Самара

Yu. P. Zarubin

Samara National Research University, Samara, Russia

Email: vologzhanina@mail.ru
Россия, Самара

P. V. Dorovatovskii

National Research Center Kurchatov Institute, Moscow, Russia

Email: vologzhanina@mail.ru
Россия, Москва

A. A. Korlyukov

Pirogov Russian National Research Medical University, Moscow, Russia; Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Email: vologzhanina@mail.ru
Россия, Москва; Россия, Москва

A. V. Vologzhanina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: vologzhanina@mail.ru
Россия, Москва

References

  1. Soldevila-Barreda J.J., Metzler-Nolte N. // Chem. Rev. 2019. V. 119. № 2. P. 829. https://doi.org/10.1021/acs.chemrev.8b00493
  2. Saboury A.A. // J. Iran. Chem. Soc. 2006. V. 3. № 1. P. 1. https://doi.org/10.1007/BF03245784
  3. Poursharifi M., Wlodarczyk M.T., Mieszawska A.J. // Inorganics. 2019. V. 7. № 1. P. 2. https://doi.org/10.3390/inorganics7010002
  4. Palermo G., Spinello A., Saha A. et al. // Expert Opin. Drug Discov. 2021. V. 16. № 5. P. 497. https://doi.org/10.1080/17460441.2021.1851188
  5. Vidossich P., Magistrato A. // Biomolecules. 2014. V. 4. № 3. P. 616. https://doi.org/10.3390/biom4030616
  6. Palermo G., Magistrato A., Riedel T. et al. // ChemMedChem. 2016. V. 11. № 12. P. 1199. https://doi.org/10.1002/cmdc.201500478
  7. Dey D., Basu S. // J. Lumin. 2011. V. 131. № 4. P. 732. https://doi.org/10.1016/j.jlumin.2010.11.027
  8. Mosae Selvakumar P., Suresh E., Subramanian P.S. // Polyhedron. 2009. V. 28. № 2. P. 245. https://doi.org/10.1016/j.poly.2008.10.072
  9. Maclaren J.K., Janiak C. // Inorg. Chim. Acta. 2012. V. 389. P. 183. https://doi.org/10.1016/j.ica.2012.03.010
  10. Wang J., Xu X.-Y., Ma W.-X. et al. // Jiegou Huaxue. 2008. V. 27. P. 153.
  11. Wang J., Xu X., Ma W. et al. // Acta Crystallogr. E. 2007. V. 63. № 11. P. m2867. https://doi.org/10.1107/S1600536807053421
  12. Xie Y., Wu H.-H., Yong G.-P. et al. // Acta Crystallogr. E. 2006. V. 62. № 9. P. m2089. https://doi.org/10.1107/S1600536806030364
  13. Mendiratta S., Usman M., Luo T.-T. et al. // Cryst. Growth Des. 2014. V. 14. № 4. P. 1572. https://doi.org/10.1021/cg401472k
  14. Xiao D.-R., Zhang G.-J., Liu J.-L. et al. // Dalton Trans. 2011. V. 40. № 21. P. 5680. https://doi.org/10.1039/C1DT10262A
  15. Mendiratta S., Tseng T.-W., Luo T.-T. et al. // Cryst. Growth Des. 2018. V. 18. № 5. P. 2672. https://doi.org/10.1021/acs.cgd.8b00012
  16. Patra A.K., Bhowmick T., Ramakumar S. et al. // Dalton Trans. 2008. № 48. P. 6966. https://doi.org/10.1039/B802948B
  17. Şenel P., İnci D., Aydın R. et al. // Appl. Organomet. Chem. 2019. V. 33. № 10. P. E5122. https://doi.org/10.1002/aoc.5122
  18. Kumita H., Kato T., Jitsukawa K. et al. // Inorg. Chem. 2001. V. 40. № 16. P. 3936. https://doi.org/10.1021/ic000990p
  19. Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y.V. et al. // Crystals. 2017. V. 7. № 11. P. 325. https://doi.org/10.3390/cryst7110325
  20. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1900184. https://doi.org/10.1002/crat.201900184
  21. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. № 2. P. 125. https://doi.org/10.1107/S0907444909047337
  22. Evans P. // Acta Crystallogr. D. 2006. V. 62. № 1. P. 72. https://doi.org/10.1107/S0907444905036693
  23. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  24. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  25. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. A-ppl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  26. Peresypkina E.V., Blatov V.A. // Acta Crystallogr. B. 2000. V. 56. № 3. P. 501. https://doi.org/10.1107/S0108768199016675
  27. Peresypkina E.V., Blatov V.A. // Acta Crystallogr. B. 2000. V. 56. № 6. P. 1035. https://doi.org/10.1107/S0108768100011824
  28. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. № 7. P. 3576. https://doi.org/10.1021/cg500498k
  29. Kresse G., Hafner J. // Phys. Rev. B. 1993. V. 47. № 1. P. 558. https://doi.org/10.1103/PhysRevB.47.558
  30. Kresse G., Hafner J. // Phys. Rev. B. 1994. V. 49. № 20. P. 14251. https://doi.org/10.1103/PhysRevB.49.14251
  31. Kresse G., Furthmüller J. // Phys. Rev. B. 1996. V. 54. № 16. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
  32. Kresse G., Furthmüller J. // Comput. Mater. Sci. 1996. V. 6. № 1. P. 15. https://doi.org/10.1016/0927-0256(96)00008-0
  33. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
  34. Gonze X., Beuken J.-M., Caracas R. et al. // Comput. Mater. Sci. 2002. V. 25. № 3. P. 478. https://doi.org/10.1016/S0927-0256(02)00325-7
  35. Tang W., Sanville E., Henkelman G. // J. Phys. Condens. Matter. 2009. V. 21. № 8. P. 084204. https://doi.org/10.1088/0953-8984/21/8/084204
  36. Bader R.F.W. // Atoms in Molecules: A Quantum Theory, Clarendon Press, 1994. 438 p. https://books.google.ru/books?id=tyVpQgAACAAJ
  37. Bader R.F.W. // Acc. Chem. Res. 1985. V. 18. № 1. P. 9. https://doi.org/10.1021/ar00109a003
  38. Korlyukov A.A., Khrustalev V.N., Vologzhanina A.V. et al. // Acta Crystallogr. B. 2011. V. 67. № 4. P. 315. https://doi.org/10.1107/S0108768111022695
  39. Vologzhanina A.V., Savchenkov A.V., Dmitrienko A.O. et al. // J. Phys. Chem. A. 2014. V. 118. № 41. P. 9745. https://doi.org/10.1021/jp507386j
  40. Вологжанина А.В., Лысенко К.А. // Изв. АН. Сер. хим. 2013. Т. 62. № 8. С. 1786 (Vologzhanina A.V., Lyssenko K.A. // Russ. Chem. Bull. 2013. V. 62. № 8. P. 1786). https://doi.org/10.1007/s11172-013-0257-0
  41. Serezhkin V.N., Serezhkina L.B., Vologzhanina A.V. // Acta Crystallogr. B. 2012. V. 68. № 3. P. 305. https://doi.org/10.1107/S0108768112014711
  42. Serezhkin V.N., Savchenkov A.V. // Cryst. Growth Des. 2015. V. 15. № 6. P. 2878. https://doi.org/10.1021/acs.cgd.5b00326
  43. Serezhkin V.N., Savchenkov A.V. // Cryst. Growth Des. 2020. V. 20. № 3. P. 1997. https://doi.org/10.1021/acs.cgd.9b01645
  44. Serezhkin V.N., Savchenkov A.V. // CrystEngComm. 2021. V. 23. № 3. P. 562. https://doi.org/10.1039/D0CE01535K
  45. Vologzhanina A.V. // Crystals. 2019. V. 9. № 9. P. 478. https://doi.org/10.3390/cryst9090478
  46. Зорина-Тихонова Е.Н., Чистяков А.С., Кискин М.А. и др. // Коорд. химия. 2021. Т. 47. № 6. С. 373 (Zorina-Tikhonova E.N., Chistyakov A.S., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 6. P. 409). https://doi.org/10.1134/S1070328421060099
  47. Karnoukhova V.A., Baranov V.V., Vologzhanina A.V. et al. // CrystEngComm. 2021. V. 23. № 24. P. 4312. https://doi.org/10.1039/D1CE00434D
  48. Vologzhanina A.V., Ushakov I.E., Korlyukov A.A. // Int. J. Mol. Sci. 2020. V. 21. № 23. P. 8970. https://doi.org/10.3390/ijms21238970
  49. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. № 3. P. 170. https://doi.org/10.1016/S0009-2614(98)00036-0

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (153KB)
3.

Download (550KB)
4.

Download (58KB)
5.

Download (573KB)
6.

Download (166KB)
7.

Download (1002KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies