Heat Capacity and Thermodynamic Functions of Ho2O3·2HfO2 Solid Solution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Isobaric heat capacity measurements in the range 2.4–1807 K have been performed by relaxation calorimetry, adiabatic calorimetry, and differential scanning calorimetry on a Ho2O3‧2HfO2 solid solution sample prepared and characterized by X-ray powder diffraction, electron microscopy, and chemical analysis, and thermodynamic functions have been calculated. The Schottky anomaly contribution has been determined in the range 2.4–300 K.

About the authors

A. V. Guskov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: a.gus@igic.ras.ru
119991, Moscow, Russia

P. G. Gagarin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: a.gus@igic.ras.ru
119991, Moscow, Russia

V. N. Guskov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: a.gus@igic.ras.ru
119991, Moscow, Russia

A. V. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: a.gus@igic.ras.ru
119991, Moscow, Russia

K. S. Gavrichev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: a.gus@igic.ras.ru
119991, Moscow, Russia

References

  1. Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. P. 2363. https://doi.org/10.1016/jeurceramsoc.2008.01.009
  2. Арсеньев П.А., Глушкова В.Б., Евдокимов А.А. и др. Соединения редкоземельных элементов. Цирконаты, гафнаты, ниобаты, танталаты, антимонаты. М.: Наука, 1985. 261 с.
  3. Subramanian M.A., AravamudanG., SubbaRao G.V. //Prog. Solid State Chem. 1983. V. 15. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
  4. Trubelja M.F., Stubican V.S. // J. Am. Ceram. Soc. 1988. V. 71. P. 662. https://doi.org/10.1111/j.1151-2916.1988.tb06385.x
  5. Duran P., Pascual C. // J. Mater. Sci. 1984. V. 19. P. 1178. https://doi.org/10.1007/bf01120027
  6. Poerschke D.L., Barth T.L., Levi C.G. // Acta Mater. 2016. V. 120. P. 302. https://doi.org/10.1016/j.actamat.2016.08.077
  7. Poerschke D.L., Jackson R.W., Levi C.G. // Annu. Rev. Mater. Res. 2017. V. 47. P. 297. https://doi.org/10.1146/annurev-matsci-010917-105000
  8. Cao X.Q., Vassen R., Stoever D. // J. Eur. Ceram. Soc. 2004. V. 24. P. 1. https://doi.org/10.1016/s0955-2219(03)00129-8
  9. Mehboob G., Liu M.-J., Xu T., Hussain S. et al. // Ceram. Int. 2019. V. 46. P. 8497. https://doi.org/10.1016/j.ceramint.2019.12.20
  10. Padture N.P. // Science. 2002. V. 296. P. 280. https://doi.org/10.1126/science.1068609
  11. Wu Z., Hong D., Zhong X., Niu Y. et al. // Ceram. Int. 2023. V. 49. P. 21133. https://doi.org/10.1016/j.ceramint.2023.03.280
  12. Summers W.D., Poerschke D.L., Begley M.R. et al. // J. Am. Ceram. Soc. 2020. V. 103. P. 5196. https://doi.org/10.1111/jace.17187
  13. Fabrichnaya O., Seifert H.J. // J. Phase Equilib. Diffus. 2010. V. 32. P. 2. https://doi.org/10.1007/s11669-010-9815-4
  14. Guskov A.V., Gagarin P.G., Guskov V.N.et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
  15. Guskov V.N., Tyurin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822. https://doi.org/10.1016/j.ceramint.2020.02.052
  16. Тюрин А.В., Хорошилов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2018. Т. 63. С. 1583. https://doi.org/10.1134/S0044457X18120218
  17. PPMS Physical Property Measurement System. Quantum Design. 2004.
  18. Lashley J.C., Hundley M.F., Migliori A. et al. // Cryogenics. 2003. V. 43. P. 369. https://doi.org/10.1016/s0011-2275(03)00092-4
  19. Малышев В.В., Мильнер Г.А., Соркин Е.Л., Шибакин В.Ф. // Приборы и техн. экспер. 1985. Т. 28. С. 195.
  20. https://analyzing-testing.netzsch.com/ru/pribory-resheniya/differenczialnaya-skaniruyushhaya-kalorimetriya-dsk-differenczialnyj-termicheskij-analiz-dta/dsc-404-f1-pegasus
  21. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  22. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  23. Westrum E.F., Ir. // J. Therm. Anal. 1985. V 30. P. 1209.
  24. Catanese C.A., Meissner H.E. // Phys. Rev. B. 1973. V. 8. P. 2060. https://doi.org/10.1103/Phys.Rev.B.8.2060
  25. Гуськов А.В., Гагарин П.Г., Гуськов В.Н. и др. // Журн. физ. химии. 2022. Т. 96. С. 1230. https://doi.org/10.31857/S004445372209014X
  26. Chirico R.D., Boerio-Goates J., Westrum E.F., Jr. // J. Chem. Thermodyn. 1981. V. 13. P. 1087. https://doi.org/10.1016/0021-9614(81)90007-0
  27. Гуськов А.В., Гагарин П.Г., Гуськов В.Н. // Докл. РАН. Химия. Науки о материалах. 2021. Т. 498. С. 83. https://doi.org/31857.S2686953521050083
  28. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
  29. Konings R.J.M., Beneš O., Kovács A.et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. https://doi.org/10.1063/1.4825256
  30. Pankratz L.B. // U.S. Bureau of Mines Bulletin. 1982. V. 672. 509 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (129KB)
3.

Download (140KB)
4.

Download (68KB)
5.

Download (97KB)

Copyright (c) 2023 А.В. Гуськов, П.Г. Гагарин, В.Н. Гуськов, А.В. Хорошилов, К.С. Гавричев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies