Синтез и функционализация несимметричных бис-фталоцианинатов тербия(III) – перспективных компонентов гибридных магнитных материалов

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Темплатной кросс-конденсацией диэтоксифталонитрила (A) и фталонитрила (B), функционализированного фрагментом диэтиленгликоля, получен новый несимметричный бис-фталоцианинат тербия состава Tb(A7B) с одной терминальной алифатической OH-группой. Дальнейшая функционализация комплекса включала последовательную замену данной группы на иодидный и тиоацетатный заместители. Синтезированные комплексы могут выступать компонентами гибридных материалов за счет иммобилизации молекул на поверхностях различной природы.

About the authors

А. Ягодин

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: martynov@phyche.ac.ru
Россия, 119071, Москва, Ленинский пр-т, 31, корп. 4

И. Кормщиков

Московский государственный университет им. М.В. Ломоносова,
Химический факультет

Email: martynov@phyche.ac.ru
Россия, 119991, Москва, Ленинские горы, 1

А. Мартынов

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Author for correspondence.
Email: martynov@phyche.ac.ru
Россия, 119071, Москва, Ленинский пр-т, 31, корп. 4

Ю. Горбунова

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН; Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: martynov@phyche.ac.ru
Россия, 119071, Москва, Ленинский пр-т, 31, корп. 4; Россия, 119991, Москва, Ленинский пр-т, 31

А. Цивадзе

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН; Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: martynov@phyche.ac.ru
Россия, 119071, Москва, Ленинский пр-т, 31, корп. 4; Россия, 119991, Москва, Ленинский пр-т, 31

References

  1. Coronado E. // Nat. Rev. Mater. 2019. V. 5. № 2. P. 87. https://doi.org/10.1038/s41578-019-0146-8
  2. Yamashita M. // Bull. Chem. Soc. Jpn. 2021. V. 94. № 1. P. 209. https://doi.org/10.1246/bcsj.20200257
  3. Wang H., Wang B.W., Bian Y. et al. // Coord. Chem. Rev. 2016. V. 306. № P1. P. 195. https://doi.org/10.1016/j.ccr.2015.07.004
  4. Martynov A.G., Horii Y., Katoh K. et al. // Chem. Soc. Rev. 2022. V. 51. № 22. P. 9262. https://doi.org/10.1039/d2cs00559j
  5. Basova T.V., Ray A.K. // ECS J. Solid State Sci. Technol. 2020. V. 9. № 6. P. 061001. https://doi.org/10.1149/2162-8777/ab9fe8
  6. Koifman O.I., Ageeva T.A., Beletskaya I.P. et al. // Macroheterocycles 2020. V. 13. № 4. P. 311. https://doi.org/10.6060/mhc200814k
  7. Chan W.L., Xie C., Lo W.S. et al. // Chem. Soc. Rev. 2021. V. 50. № 21. P. 12189. https://doi.org/10.1039/c9cs00828d
  8. Bouvet M., Gaudillat P., Suisse J.-M.M. // J. Porphyr. Phthalocyanines 2013. V. 17. № 08n09. P. 628. https://doi.org/10.1142/S1088424613300048
  9. Tanaka D., Inose T., Tanaka H. et al. // Chem. Commun. 2012. V. 48. № 63. P. 7796. https://doi.org/10.1039/c2cc00086e
  10. Gonidec M., Davies E.S., McMaster J. et al. // J. Am. Chem. Soc. 2010. V. 132. № 6. P. 1756. https://doi.org/10.1021/ja9095895
  11. Konarev D.V., Khasanov S.S., Batov M.S. et al. // Inorg. Chem. 2019. V. 58. № 8. P. 5058. https://doi.org/10.1021/acs.inorgchem.9b00131
  12. Horii Y., Kishiue S., Damjanović M. et al. // Chem. – A Eur. J. 2018. V. 24. № 17. P. 4320. https://doi.org/10.1002/chem.201705378
  13. Katoh K., Yasuda N., Damjanović M. et al. // Chem. – A Eur. J. 2020. V. 26. № 21. P. 4805. https://doi.org/10.1002/chem.201905400
  14. Stepanow S., Honolka J., Gambardella P. et al. // J. Am. Chem. Soc. 2010. V. 132. № 34. P. 11900. https://doi.org/10.1021/ja105124r
  15. Zhang Y., Wang Y., Liao P. et al. // ACS Nano 2018. V. 12. № 3. P. 2991. https://doi.org/10.1021/acsnano.8b00751
  16. Malavolti L., Poggini L., Margheriti L. et al. // Chem. Commun. 2013. V. 49. № 98. P. 11506. https://doi.org/10.1039/c3cc46868b
  17. Urdampilleta M., Nguyen N.V., Cleuziou J.P. et al. // Int. J. Mol. Sci. 2011. V. 12. № 10. P. 6656. https://doi.org/10.3390/ijms12106656
  18. Gómez-Segura J., Díez-Pérez I., Ishikawa N. et al. // Chem. Commun. 2006. № 27. P. 2866. https://doi.org/10.1039/B606276H
  19. Katoh K., Sato J., Nakanishi R. et al. // J. Mater. Chem. C 2021. V. 9. № 33. P. 10697. https://doi.org/10.1039/D1TC01026C
  20. Schweikart K.-H., Malinovskii V.L., Diers J.R. et al. // J. Mater. Chem. 2002. V. 12. № 4. P. 808. https://doi.org/10.1039/b108520d
  21. Britton J., Martynov A.G., Oluwole D.O. et al. // J. Porphyr. Phthalocyanines 2016. V. 20. P. 1296. https://doi.org/10.1142/S1088424616501042
  22. Oluwole D.O., Yagodin A.V., Britton J. et al. // Dalton Trans. 2017. V. 46. № 46. P. 16190. https://doi.org/10.1039/C7DT03867D
  23. Managa M., Khene S., Britton J. et al. // J. Porphyr. Phthalocyanines 2018. V. 22. № 01n03. P. 137. https://doi.org/10.1142/S1088424618500128
  24. Oluwole D.O., Yagodin A.V., Mkhize N.C. et al. // Chem. Eur. J. 2017. V. 23. № 12. P. 2820. https://doi.org/10.1002/chem.201604401
  25. Iqbal Z., Lyubimtsev A., Hanack M. // Synlett 2008. № 15. P. 2287. https://doi.org/10.1055/s-2008-1078269
  26. Martynov A.G., Birin K.P., Gorbunova Y.G. et al. // Macroheterocycles 2013. V. 6. № 1. P. 23. https://doi.org/10.6060/mhc130221m
  27. Takamatsu S., Ishikawa T., Koshihara S. et al. // Inorg. Chem. 2007. V. 46. № 18. P. 7250. https://doi.org/10.1021/ic700954t
  28. Platonova Y.B., Volov A.N., Tomilova L.G. // J. Catal. 2019. V. 373. P. 222. https://doi.org/10.1016/j.jcat.2019.04.003
  29. Alpugan S., İşci Ü., Albrieux F. et al. // Chem. Commun. 2014. V. 50. № 56. P. 7466. https://doi.org/10.1039/c4cc02523g
  30. Shokurov A.V., Yagodin A.V., Martynov A.G. et al. // ECS J. Solid State Sci. Technol. 2020. V. 9. № 5. P. 051006. https://doi.org/10.1149/2162-8777/ab9a5e
  31. Shokurov A.V., Yagodin A.V., Martynov A.G. et al. // Small 2022. V. 18. № 2. P. 2104306. https://doi.org/10.1002/smll.202104306
  32. May A., Majumdar P., Martynov A.G. et al. // J. Porphyr. Phthalocyanines 2020. V. 24. № 04. P. 589. https://doi.org/10.1142/S108842462050011X
  33. Gorbunova Y.G., Martynov A.G., Birin K.P. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 202. https://doi.org/10.1134/S0036023621020091
  34. Mukherjee D., Manjunatha R., Sampath S. et al. // Phthalocyanines as Sensitive Materials for Chemical Sensors, in: Mater. Chem. Sens., Springer International Publishing, Cham, 2017: pp. 165–226 https://doi.org/10.1007/978-3-319-47835-7_8
  35. Zhang Y., Cai X., Bian Y. et al. // Organic Semiconductors of Phthalocyanine Compounds for Field Effect Transistors (FETs), in: J. Jiang (Ed.), Funct. Phthalocyanine Mol. Mater., Springer Berlin Heidelberg, Berlin, Heidelberg, 2010: pp. 275–322 https://doi.org/10.1007/978-3-642-04752-7
  36. Kumar A., Meunier-Prest R., Bouvet M. // Sensors. 2020. V. 20. № 17. P. 4700. https://doi.org/10.3390/s20174700

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (48KB)
3.

Download (57KB)
4.

Download (179KB)
5.

Download (160KB)
6.

Download (89KB)

Copyright (c) 2023 А.В. Ягодин, И.Д. Кормщиков, А.Г. Мартынов, Ю.Г. Горбунова, А.Ю. Цивадзе

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies