6Ag2Se + Ag8GeTe6 ↔ 6Ag2Te + Ag8GeSe6 Reciprocal System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Here, we present the results of DTA and XRD studies of phase equilibria in the 6Ag2Se + Ag8GeTe6 ↔ 6Ag2Te + Ag8GeSe6 reciprocal system (system A). A Т–х diagram of the Ag8GeSe6–Ag8GeTe6 boundary system, several inner polythermal sections, isothermal sections at 300 and 1000 K, and the liquidus surface projection were plotted. The Ag8GeSe6–Ag8GeTe6 system is a partially quasi-binary system; it features continuous substitutional solid solutions between Ag8GeTe6 and the high-temperature cubic Ag8GeSe6 phase (the δ phase). Once solid solutions are formed, the polymorphic transition temperature in Ag8GeSe6 decreases, thereby stabilizing the ion-conducting cubic phase in the range of ≥40 mol % Ag8GeTe6 compositions at room temperature and below it. System A is shown to be a reversible reciprocal system; its liquidus surface is comprised of three fields, which relate to the primary crystallization of the solid solutions between the high-temperature Ag2Se and Ag2Te (α phase) phases, IT-Ag2Te-base solid solutions (β phase), and the δ phase. The subsolidus portion of system A features complex interactions related to polymorphism in the terminal compounds and in phases based on them

About the authors

A. J. Amiraslanova

Ganja State University

Email: samira9597a@gmail.com
AZ-2000, Ganja, Azerbaijan

A. T. Mammadova

Ganja State University

Email: samira9597a@gmail.com
AZ-2000, Ganja, Azerbaijan

S. Z. Imamaliyeva

Institute for Catalysis and Inorganic Chemistry

Email: samira9597a@gmail.com
AZ-1143, Baku, Azerbaijan

I. J. Alverdiyev

Ganja State University

Email: samira9597a@gmail.com
AZ-2000, Ganja, Azerbaijan

Yu. A. Yusibov

Ganja State University

Email: samira9597a@gmail.com
AZ-2000, Ganja, Azerbaijan

M. B. Babanly

Institute for Catalysis and Inorganic Chemistry; Baku State University

Author for correspondence.
Email: samira9597a@gmail.com
AZ-1143, Baku, Azerbaijan; AZ-1148, Baku, Azerbaijan

References

  1. Applications of Chalcogenides: S, Se, and Te / Ed. Ahluwalia G.K. Springer, 2016. 461 p.
  2. Chalcogenides: Advances in Research and Applications / Ed. Woodrow P. Nova, 2018. 111 p.
  3. Chalcogenide. From 3D to 2D and Beyond / Ed. Liu X. et al. Elsevier, 2019. 385 p.
  4. Scheer R., Schock H.-W. Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. Wiley-VCH, 2011. 384 p.
  5. Alonso-Vante N. Chalcogenide Materials for Energy Conversion: Pathways to Oxygen and Hydrogen Reactions. Springer, 2018. 226 p.
  6. Бабанлы М.Б., Юсибов Ю.А., Абишев В.Т. Трехкомпонентные халькогениды на основе меди и серебра. Баку: Изд-во БГУ, 1993. 342 с.
  7. Nieves L.M., Mossburg K., Hsu J.C. et al. // Nanoscale. 2021 V. 13. P. 19306. https://doi.org/10.1039/D0NR03872E
  8. Nasonova D.I., Sobolev A.V., Presniakov I.A. et al. // J. Alloys Compd. 2019. V. 778. P. 774. https://doi.org/10.1016/j.jallcom.2018.11.168
  9. Amrillah T., Prasetio A., Supandi A.R. et al. // Mater. Horiz. 2023. V. 10. P. 313. https://doi.org/10.1039/D2MH00983H
  10. Akhil S., Balakrishna R.G. // ACS Sustainable Chem. Eng. 2022. V. 10. № 39. P. 13176. https://doi.org/10.1021/acssuschemeng.2c04333
  11. Tee S.Y., Ponsford D., Lay C.L. et al. // Adv. Sci. 2022. V. 9. № 36. P. 2204624. https://doi.org/10.1002/advs.202204624
  12. Fu H. // J. Mater. Chem. C. 2018. V. 6. P. 414. https://doi.org/10.1039/C7TC04952H
  13. Lin S., Li W., Pei Y. // Mater. Today. 2021. V. 48. P. 198. https://doi.org/10.1016/j.mattod.2021.01.007
  14. Fujikane M., Kurosaki K., Muta H. et al. // J. Alloys Compd. 2005. V. 396. P. 280. https://doi.org/10.1016/j.jallcom.2004.12.038
  15. Jiang Q., Li S., Luo Y. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 54653. https://doi.org/10.1021/acsami.0c15877
  16. Fan Y., Wang G., Wang R. et al. // J. Alloys Compd. 2020. V. 822. P. 153665. https://doi.org/10.1016/j.jallcom.2020.153665
  17. Semkiv H., Ilchuk N., Kashuba A. // Low Temp. Phys. 2022. V. 48. P. 12. https://doi.org/10.1063/10.0008957
  18. Yeh L.-Y., Cheng K.-W. // Catal. 2021. V. 11. P. 363. https://doi.org/10.3390/catal11030363
  19. Yang C., Xia Y., Xu L. et al. // J. Chem. Eng. 2021. V. 426. P. 131752. https://doi.org/10.1016/j.cej.2021.131752
  20. Tong Y., Huang W., Tan X. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 55780. https://doi.org/10.1021/acsami.2c17532
  21. Иванов-Щиц А.К., Мурин И.В. Ионика твердого тела. СПб.: Изд-во С.-Петерб. ун-та, 2000. Т. 1. 616 с.
  22. Li L., Liu Y., Dai J. et al. // J. Mater. Chem. C. 2016. V. 4. P. 5806. https://doi.org/10.1039/C6TC00810K
  23. Sardarly R.M., Ashirov G.M., Mashadiyeva L.F. et al. // Mod. Phys. Lett. B. 2023. https://doi.org/10.1142/S0217984922501718
  24. Studenyak I.P., Pogodin A.I., Studenyak V.I. et al. // Solid State Ionics. 2020. V. 345. P. 115183. https://doi.org/10.1016/j.ssi.2019.115183
  25. Lin Y., Fang S., Su D. et al. // Nat. Commun. 2015. V. 6. P. 1. https://doi.org/10.1038/ncomms7824
  26. Heep B.K., Weldert K.S., Krysiak Y. et al. // Chem. Mater. 2017. V. 29. P. 4833. https://doi.org/10.1021/acs.chemmater.7b00767
  27. West D.R.F. Ternary Phase Diagrams in Materials Science. CRC Press, 2019. 236 p.
  28. Saka H. Introduction To Phase Diagrams In Materials Science And Engineering. World Scientific Publishing Company, 2020. 188.
  29. Babanly M.B., Mashadiyeva L.F., Babanly D.M. et al. // Russ. J. Inorg. Chem. 2019. V. 64. № 13. P. 1649. https://doi.org/10.1134/S0036023619130035
  30. Imamaliyeva S.Z., Babanly D.M., Tagiev D.B. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 1704. https://doi.org/10.1134/S0036023618130041
  31. Машадиева Л.Ф., Алиева З.М., Мирзоева Р.Дж. и др. // Журн. неорган. химии. 2022. Т. 67. № 5. С. 606.
  32. Юсибов Ю.А., Алвердиев И.Дж., Машадиева Л.Ф. и др. // Журн. неорган. химии. 2018. Т. 63. № 12. С. 1607.
  33. Алвердиев И.Дж., Багери С.М., Алиева З.М. и др. // Неорганические материалы. 2017. Т. 53. № 8. С. 886.
  34. Alverdiyev I.J., Aliev Z.S., Bagheri S.M. et al. // J. Alloys Compd. 2017. V. 691. P. 255. https://doi.org/10.1016/j.jallcom.2016.08.251
  35. Aliyeva Z.M., Bagheri S.M., Aliev Z.S. et al. // J. Alloys Compd. 2014. V. 611. P. 395. https://doi.org/10.1016/j.jallcom.2014.05.112
  36. Abbasova V.A., Alverdiyev I.J., Mashadiyeva L.F. et al. // Azerb. Chem. J. 2017. P. 30.
  37. Алиева З.М., Багери С.М., Алвердиев И.Дж. и др. // Неорган. материалы. 2014. Т. 50. № 10. С. 1063.
  38. Алвердиев И.Дж., Аббасова В.А., Юсибов Ю.А. и др. // Электрохимия. 2018. Т. 54. № 2. С. 224.
  39. Alverdiyev I.J. // Azerb. Chem. J. 2019. P. 70. https://doi.org/10.32737/0005-2531-2019-4-70-75
  40. Ashirov G.M. // Azerb. Chem. J. 2022. P. 89. https://doi.org/10.32737/0005-2531-2022-1-89-93
  41. Binary alloy phase diagrams / Ed. Massalski T.B. Ohi, 1990. V. 3. 3589 p.
  42. Oliveria M., McMullan R.K., Wuensch B.J. // Solid State Ion. 1988. V. 28. P. 1332. https://doi.org/10.1016/0167-2738(88)90382-7
  43. Wiegers G.A. // Am. Mineral. 1971. V. 56. P. 1882.
  44. Schneider J., Schulz H. // Z. Kristallogr. 1993. V. 203. P. 1. https://doi.org/10.1524/zkri.1993.203.Part-1.1
  45. Van Der Lee A., De Boer J.L. // Acta Crystallogr. C. 1993. V. 49. P. 1444.
  46. Frueh A.J. // Am. Mineral. 1961. V. 46. P. 654.
  47. Ollitrault-Fichet R., Rivet J., Flahaut J.J. // J. Less-Common Met. 1985. V. 114. P. 273. https://doi.org/10.1016/0022-5088(85)90445-X
  48. Юсибов Ю.А., Алвердиев И.Дж., Ибрагимова Ф.С. и др. // Журн. неорган. химии. 2017. Т. 62. № 5. С. 1232.
  49. Carré D., Fichet O.R., Flahaut J. // Acta Crystallogr., Sect. B. 1980. V. 36. P. 245. https://doi.org/10.1107/S0567740880003032
  50. Gorochov O. // Bull. Soc. Chim. Fr. 1968. P. 2263.
  51. Ferhat A., Fichet O.R., Rivet J. // J. Alloys Compd. 1991. V. 177. P. 337. https://doi.org/10.1016/0925-8388(91)90087-C
  52. Rysanek N., Laruelle P., Katty A. // Acta. Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mater. 1976. V. 32. P. 692.
  53. Aramov N., Odin I., Mladenova B.Z. // Thermochim. Acta. 1977. V. 20. P. 107.
  54. Hofmann A.M. Silver-Selenium-Tellurium // Ternary Alloys. VCH. 1998. V. 2. P. 567.
  55. Глазов В.М., Бурханов А.С., Салеева Н.М. // Изв. АН СССР. Неорган. материалы. 1977. Т. 13. № 5. С. 917.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (321KB)
3.

Download (161KB)
4.

Download (414KB)
5.

Download (239KB)
6.

Download (272KB)
7.

Download (308KB)
8.

Download (303KB)
9.

Download (287KB)
10.

Download (288KB)

Copyright (c) 2023 А.Дж. Амирасланова, А.Т. Мамедова, С.З. Имамалиева, И.Дж. Алвердиев, Ю.А. Юсибов, М.Б. Бабанлы

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies