Interaction of SiC with Al2O3−(t + m)ZrO2(Y2O3) Oxide Composition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We employed contact alloying in the range 1000–1860°С to study the reaction specifics between SiC and Al2O3−(t + m)ZrO2(Y2O3) oxide composition. Real-time experiments with photographic recording of the changing size and shape of the Al2O3−(t + m)ZrO2(Y2O3) sample on a SiC ceramic substrate showed that Al2O3−(t + m)ZrO2(Y2O3) compositions react with the silicon carbide substrate in the range 1720–1860°С to melt and penetrate into (impregnate) the substrate. X-ray powder diffraction patterns were measured for samples taken from the contact area of the oxide composition with SiC directly on the substrate and in a chipped-off <1-mm-deep near-surface layer. ZrС, Al2Y4O9, and Al3.21Si0.47 were formed in the contact area via redox reactions involving oxide melt, in addition to 6H-SiC, Si and Al2O3, t-ZrO2 phases, which are the initial components of the substrate and oxide composition, respectively.

About the authors

A. Yu. Ivannikov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: frolovamarianna@bk.ru
119334, Moscow, Russia

M. D. Mel’nikov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences; Mendeleev Russian University of Chemical Technologies

Email: frolovamarianna@bk.ru
119334, Moscow, Russia; 125048, Moscow, Russia

Yu. F. Kargin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: frolovamarianna@bk.ru
119334, Moscow, Russia

M. G. Frolova

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: frolovamarianna@bk.ru
119334, Moscow, Russia

A. S. Lysenkov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: frolovamarianna@bk.ru
119334, Moscow, Russia

S. N. Perevislov

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences

Email: frolovamarianna@bk.ru
199034, St. Petersburg, Russia

N. V. Petrakova

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: frolovamarianna@bk.ru
119334, Moscow, Russia

K. A. Kim

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: frolovamarianna@bk.ru
119334, Moscow, Russia

M. A. Sevost’yanov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: frolovamarianna@bk.ru
119334, Moscow, Russia

References

  1. Шевченко В.Я., Баринов С.М. Техническая керамика. M.: Наука, 1993. 187 с.
  2. Андрианов Н.Т. и др. Химическая технология керамики: учеб. пособие для вузов / Под ред. Гузмана И.Я. М.: ООО Риф “Стройматериалы”, 2012. 496 с.
  3. Schwetz K.A. // Handbook of Ceramic Hard Materials. 2000. P. 683.
  4. Фролова М.Г., Лысенков А.С., Титов Д.Д. и др. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1086. https://doi.org/10.1134/S0036023621080052
  5. Saddow S.E. Advances in Silicon Carbide. Processing and Applications. London: Artech House Inc., 2004. 435 p.
  6. Katoh Y., Snead L.L., Szlufarska I. et al. // Curr. Opin. Solid State Mater. Sci. 2012. V. 16. P. 143. https://doi.org/10.1016/j.cossms.2012.03.005
  7. Christin F. // Adv. Eng. Mater. 2002. V. 4. P. 903. https://doi.org/10.1002/adem.200290001
  8. Ji S., Zhang Z., Wang F. // CES Transactions on Electrical Machines and Systems. 2017. V. 1. P. 254. https://doi.org/10.23919/TEMS.2017.8086104
  9. Casady J.B., Johnson R.W. // Solid-State Electron. 1996. V. 39. P. 1409. https://doi.org/10.1016/0038-1101(96)00045-7
  10. Neher R., Herrmann M., Brandt K. et al. // J. Eur. Ceram. Soc. 2011. V. 31. P. 175. https://doi.org/10.1016/j.jeurceramsoc.2010.09.002
  11. Zhitnyuk S.V., Golovchenko I.A., Makarov N.A. et al. // Glass Ceram. 2013. V. 70. P. 247. https://doi.org/10.1007/s10717-013-9554-1
  12. Abilev M., Zhilkashinova A., Pavlov A. et al. // Silicon. 2023. https://doi.org/10.1007/s12633-023-02318-5
  13. Кхин Маунг Сое. Композиционная керамика на основе карбида кремния с эвтектическими добавками в системах Al2O3–TiO2–MnO, Al2O3–MnO–SiO2, MgO–SiO2, Al2O3(MgO)–MgO–SiO2. Дис. … канд. техн. наук. М., 2019. 110 с.
  14. Житнюк С.В. // Тр. ВИАМ. 2019. № 3. С. 79.
  15. Житнюк С.В. Керамика на основе карбида кремния, модифицированная добавками эвтектического состава. Дисс. … канд. тех. наук. РХТУ им. Д.И. Менделеева. М., 2014. 174 с.
  16. Фролова М.Г., Каргин Ю.Ф., Лысенков А.С. и др. // Неорган. материалы. 2020. Т. 56. № 9. С. 1039. https://doi.org/10.1134/S0020168520090058
  17. Perevislov S.N., Lysenkov A.S., Titov D.D. et al // Glass Ceram. 2019. V. 75. P. 400. https://doi.org/10.1007/s10717-019-00094-6
  18. Perevislov S.N., Tomkovich M.V., Lysenkov A.S. // Refract. Ind. Ceram. 2019. V. 59. P. 522. https://doi.org/10.1007/s11148-019-00265-6
  19. Перевислов С.Н., Чупов В.Д., Томкович М.В. // Вопросы материаловедения. 2011. № 1. С. 123.
  20. Grande T., Sommerset H., Hagen E. et al. // J. Am. Ceram. Soc. 1997. V. 80. P. 1047.
  21. Перевислов С.Н. // Перспективные материалы. 2013. № 10. С. 47.
  22. Noviyanto A., Yoon D.-H. // Curr. Appl. Phys. 2013. V. 1. P. 287. https://doi.org/10.1016/j.cap.2012.07.027
  23. Tomkovich M.V., Perevislov S.N., Panteleev I.B. et al. // Refract. Ind. Ceram. 2020. V. 60. P. 445. https://doi.org/10.17073/1683-4518-2019-9-31-41
  24. Фролова М.Г., Леонов А.В., Каргин Ю.Ф. и др. // Материаловедение. 2017. № 12. С. 32.
  25. Zawrah M.F., Shaw L. // Ceram. Int. 2004. V. 30. P. 721. doi.org/https://doi.org/10.1016/j.ceramint.2003.07.017
  26. Fei Y., Song X., Du L. et al. // Ceram. Int., Part A. 2022. V. 19. P. 27324. https://doi.org/10.1016/j.ceramint.2022.04.326
  27. Baud S., Thévenot F., Pisch A. et al. // J. Eur. Ceram. Soc. 2003. V. 23. P. 1. https://doi.org/10.1016/S0955-2219(02)00067-5
  28. Baud S., Thévenot F., Chatillon C. // J. Eur. Ceram. Soc. 2003. V. 23. P. 9. https://doi.org/10.1016/S0955-2219(02)00068-7
  29. Baud S., Thévenot F., Chatillon C. // J. Eur. Ceram. Soc. 2003. V. 23. P. 19. https://doi.org/10.1016/S0955-2219(02)00069-9
  30. Baud S., Thévenot F., Chatillon C. // J. Eur. Ceram. Soc. 2003. V. 23. P. 29. https://doi.org/10.1016/S0955-2219(02)00070-5
  31. Ihle J., Herrmann M., Adler J. // J. Eur. Ceram. Soc. 2005. V. 25. P. 987. https://doi.org/10.1016/j.jeurceramsoc.2004.04.015
  32. Ihle J., Herrmann M., Adler J. // J. Eur. Ceram. Soc. 2005. V. 25. P. 1005. https://doi.org/10.1016/j.jeurceramsoc.2004.04.017
  33. Grande T., Sommerset H., Hagen E. et al. // J. Am. Ceram. Soc. 1997. V. 80. № 4. P. 1047.
  34. Baud S., Thévenot F., Pisch A. et al. // J. Eur. Ceram. Soc. 2003. V. 23. P. 1. https://doi.org/10.1016/S0955-2219(02)00067-5
  35. Gadalla A., Almasry M., Kongkachuichay P. // J. Mater. Res. 1992. V. 7. P. 2585.
  36. Samanta A.K., Dharguupta K.K., Ghatak S. // Ceram. Int. 2001. V. 27. P. 123. https://doi.org/10.1016/S0272-8842(00)00050-X
  37. Keppeler M., Reichert H.-G., Broadley J.M. et al. // J. Eur. Ceram. Soc. 1998. V. 18. P. 521. https://doi.org/10.1016/S0955-2219(97)00163-5
  38. Can A., Herrmann M., McLachlan D.S. et al. // J. Eur. Ceram. Soc. 2006. V. 26. P. 1707. https://doi.org/10.1016/j.jeurceramsoc.2005.03.253
  39. Borrero-López O., Ortiz A.L., Guiberteau F. et al. // J. Eur. Ceram. Soc. 2007. V. 27. P. 3351. https://doi.org/10.1016/j.jeurceramsoc.2007.02.190
  40. Gomez E., Echeberria J., Iturriza I. et al. // J. Eur. Ceram. Soc. V. 24. P. 2895. https://doi.org/10.1016/j.jeurceramsoc.2003.09.002
  41. Симоненко Е.П., Симоненко Н.П., Нагорнов И.А. и др. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1274. https://doi.org/10.31857/S0044457X20090202
  42. Lyubushkin R.A., Sirota V.V., Ivanov O.N. // Glass Phys. Chem. 2012. V. 38. P. 137. https://doi.org/10.1134/S1087659611060101
  43. Ayash S., Alshoufi K., Soukieh M. et al. // J. Fusion Energy. 2016. V. 35. P. 567. https://doi.org/10.1007/s10894-016-0071-4
  44. Oelgardt C., Anderson J., Heinrich J.G. et al. // J. Eur. Ceram. Soc. 2010. V. 30. P. 649. https://doi.org/10.1016/j.jeurceramsoc.2009.09.011
  45. Dyatlova Ya., Ordanyan S.S., Osmakov A. et al. // Adv. Sci. Technol. 2010. V. 65. P. 11. https://doi.org/10.4028/www.scientific.net/AST.65.11
  46. Lakiza S.N., Lopato L.M., Shevchenko A.V. // Powder Metall. Met. Ceram. 1995. V. 33. P. 595.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (453KB)
3.

Download (98KB)
4.

Download (874KB)
5.

Download (1MB)
6.

Download (775KB)
7.

Download (2MB)
8.

Download (57KB)
9.

Download (112KB)

Copyright (c) 2023 М.Г. Фролова, А.С. Лысенков, С.Н. Перевислов, Н.В. Петракова, К.А. Ким, М.А. Севостьянов, А.Ю. Иванников, М.Д. Мельников, Ю.Ф. Каргин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies