Спектральные исследования процесса координации 1-метил-2-(пиридин-4-ил)-3,4-фуллеро[60]пирролидина высокозамещенным порфирином кобальта(II)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

При взаимодействии (5,15-бис[3,5-бис(трет-бутил)фенил]-10,20-бис{4,6-бис[3,5-бис(3,6-ди-трет-бутилкарбазол-9-ил)фенокси]пиримидин-5-ил}порфина с Co(AcO)2 · 4H2O получен новый дендримерный комплекс кобальта(II) CoP. Процесс двухступенчатой двухсторонней координации 1-метил-2-(пиридин-4'-ил)-3,4-фуллеро[60]пирролидина (PyC60) кобальт(II)порфирином, полное кинетическое описание которого получено с помощью методов УФ-видимой и флуоресцентной спектроскопии, заканчивается образованием устойчивого комплекса 1 : 2, триады состава (PyC60)2CoP. Константа устойчивости (K) координационного комплекса равна (9.9 ± 2.4) × 108 л2 моль–2 (lgK = = 9.0). Химическое строение триады установлена методами УФ-, видимой, 1H ЯМР- и ИК-спектроскопии. Обнаружен и изучен эффект тушения флуоресценции PyC60 в составе триады и обоснован статический механизм процесса тушения. Результат может быть использован в оптоэлектронике при оптимизации структур донорно-акцепторных систем со свойством фотоиндуцированного переноса электрона.

About the authors

Н. Бичан

Институт химии растворов им. Г.А. Крестова РАН

Author for correspondence.
Email: bng@isc-ras.ru
Россия, 153045, Иваново

В. Мозгова

Институт химии растворов им. Г.А. Крестова РАН

Email: bng@isc-ras.ru
Россия, 153045, Иваново

Е. Овченкова

Институт химии растворов им. Г.А. Крестова РАН

Email: bng@isc-ras.ru
Россия, 153045, Иваново

М. Груздев

Институт химии растворов им. Г.А. Крестова РАН

Email: bng@isc-ras.ru
Россия, 153045, Иваново

Т. Ломова

Институт химии растворов им. Г.А. Крестова РАН

Email: bng@isc-ras.ru
Россия, 153045, Иваново

References

  1. Sutton L.R., Scheloske M., Pirner K.S. et al. // J. Am. Chem. Soc. 2004. V. 126. № 33. P. 10370. https://doi.org/10.1021/ja048983d
  2. D'Souza F., Ito O. // Coord. Chem. Rev. 2005. V. 249. № 13. P. 1410. https://doi.org/10.1016/j.ccr.2005.01.002
  3. Миронов А.Ф. // Макрогетероциклы. 2011. Т. 4. № 3. С. 186.
  4. Nikolaou V., Charisiadis A., Stangel C. et al. // J. Carbon Res. 2019. V. 5. № 3. P. 57. https://doi.org/10.3390/c5030057
  5. Лебедева В.С., Миронова Н.А., Рузиев Р.Д. и др. // Макрогетероциклы. 2018. Т. 11. № 4. С. 339. https://doi.org/10.6060/mhc180690l
  6. Моторина Е.В., Климова И.А., Бичан Н.Г. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1779. https://doi.org/10.31857/S0044457X22600712
  7. Цивадзе А.Ю., Чернядьев А.Ю. // Журн. неорган. химии. 2020. Т. 65. № 11. С. 1469. https://doi.org/10.31857/S0044457X20110197
  8. Loiseau F., Campagna S., Hameurlaine A. et al. // J. Am. Chem. Soc. 2005. V. 127. № 32. P. 11352. https://doi.org/10.1021/ja0514444
  9. Organista-Mateos U., Martínez-Klimov M.E., Pedro-Hernández L.D. et al. // J. Photochem. Photobiol. A: Chemistry. 2017. V. 343. P. 58. https://doi.org/10.1016/j.jphotochem.2017.04.020
  10. Maes W., Dehaen W. // Eur. J. Org. Chem. 2009. V. 2009. № 28. P. 4719. https://doi.org/10.1002/ejoc.200900512
  11. Albrecht K., Kasai Y., Kuramoto Y. et al. // Chem. Commun. 2013. V. 49. № 9. P. 865. https://doi.org/10.1039/c2cc36451d
  12. Bichan N.G., Ovchenkova E.N., Ksenofontov A.A. et al. // Dyes Pigm. 2022. V. 204. P. 110470. https://doi.org/10.1016/j.dyepig.2022.110470
  13. Gruzdev M.S., Chervonova U.V., Ksenofontov A.A. et al. // Opt. Mater. 2021. V. 122. P. 111661. https://doi.org/10.1016/j.optmat.2021.111661
  14. Сюткин Р.В., Абашев Г.Г., Шкляева Е.В. и др. // Журн. орг. химии. 2011. Т. 47. № 4. С. 532.
  15. Груздев М.С., Червонова У.В., Венедиктов Е.А. и др. // Журн. общ. химии. 2015. Т. 85. № 6. С. 964.
  16. Staderini M., Vanni S., Baldeschi A.C. et al. // Eur. J. Med. Chem. 2023. V. 245. P. 114923. https://doi.org/10.1016/j.ejmech.2022.114923
  17. Banerjee A., Kundu S., Bhattacharyya A. et al. // Org. Chem. Frontiers. 2021. V. 8. № 11. P. 2710. https://doi.org/10.1039/d1qo00092f
  18. Çelik F., Aydın A., Bektaş K.İ. et al. // Russ. J. Gen. Chem. 2022. V. 92. № 10. P. 2145. https://doi.org/10.1134/s1070363222100279
  19. Скрылькова А.С., Егоров Д.М., Тарабанов Р.В. // Журн. общ. химии. 2021. Т. 91. № 91. С. 1627. https://doi.org/10.31857/S0044460X21100206
  20. Devi E.R., Sreenivasulu R., Rao M.V.B. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 6. P. 1105. https://doi.org/10.1134/s1070363221060189
  21. Xu T., Lu R., Liu X. et al. // Org. Lett. 2007. V. 9. № 5. P. 797. https://doi.org/10.1021/ol062979k
  22. El-Khouly M.E., Kang E.S., Kay K.-Y. et al. // Chem. Eur. J. 2007. V. 13. № 10. P. 2854. https://doi.org/10.1002/chem.200601254
  23. Guo Q., Chen L., Pan S. et al. // Dalton Trans. 2018. V. 47. № 37. P. 13164. https://doi.org/10.1039/c8dt02275e
  24. Ovchenkova E.N., Bichan N.G., Gruzdev M.S. et al. // New J. Chem. 2021. V. 45. № 20. P. 9053. https://doi.org/10.1039/d1nj00980j
  25. Subedi D.R., Jang Y., Ganesan A. et al. // J. Porphyrins Phthalocyanines. 2021. V. 25. № 05–06. P. 533. https://doi.org/10.1142/s1088424621500449
  26. Ovchenkova E.N., Motorina E.V., Bichan N.G. et al. // J. Organomet. Chem. 2022. V. 977. P. 122458. https://doi.org/10.1016/j.jorganchem.2022.122458
  27. Бичан Н.Г., Овченкова Е.Н., Груздев М.С. и др. // Журн. структур. химии. 2018. Т. 59. № 3. С. 734. https://doi.org/10.26902/JSC20180332
  28. Бичан Н.Г., Овченкова Е.Н., Мозгова В.А. и др. // Журн. неорган. химии. 2019. Т. 64. № 5. С. 490. https://doi.org/10.1134/S0044457X19050027
  29. Бичан Н.Г., Овченкова Е.Н., Мозгова В.А. и др. // Журн. физ. химии. 2020. Т. 94. № 6. С. 873.
  30. Bichan N.G., Ovchenkova E.N., Kudryakova N.O. et al. // J. Coord. Chem. 2017. V. 70. № 14. P. 2371. https://doi.org/10.1080/00958972.2017.1335867
  31. Bichan N.G., Ovchenkova E.N., Ksenofontov A.A. et al. // J. Mol. Liq. 2021. V. 326. P. 115306. https://doi.org/10.1016/j.molliq.2021.115306
  32. Bichan N.G., Ovchenkova E.N., Mozgova V.A. et al. // Polyhedron. 2021. V. 203. P. 115223. https://doi.org/10.1016/j.poly.2021.115223
  33. Bichan N.G., Ovchenkova E.N., Mozgova V.A. et al. // Molecules. 2022. V. 27. P. 8900. https://doi.org/10.3390/molecules27248900
  34. Lomova T.N., Motorina E.V., Klyuev M.V. // Macroheterocycles. 2013. V. 6. № 4. P. 327. https://doi.org/10.6060/mhc130644l
  35. Liu Y., Bian Y., Zhang Y. et al. // J. Phys. Chem. Lett. 2021. V. 12. № 22. P. 5349. https://doi.org/10.1021/acs.jpclett.1c01123
  36. Ma B., Sun Y.-P. // J. Chem. Soc., Perkin Trans. 2. 1996. № 10. P. 2157. https://doi.org/10.1039/p29960002157
  37. Brites M.J., Santos C., Nascimento S. et al. // New J. Chem. 2006. V. 30. № 7. P. 1036. https://doi.org/10.1039/b601649a
  38. Luo C., Fujitsuka M., Watanabe A. et al. // J. Chem. Soc., Faraday Trans. 1998. V. 94. № 4. P. 527. https://doi.org/10.1039/a706672d
  39. Ovchenkova E.N., Bichan N.G., Tsaturyan A.A. et al. // J. Phys. Chem. C. 2020. V. 124. P. 4010. https://doi.org/10.1021/acs.jpcc.9b11661
  40. Thornton D.A., Verhoeven P.F.M. // Spectrosc. Lett. 1995. V. 28. № 4. P. 587. https://doi.org/10.1080/00387019508009902
  41. Martin M.C., Du X., Kwon J. et al. // Phys. Rev. B. 1994. V. 50. № 1. P. 173. https://doi.org/10.1103/PhysRevB.50.173

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (150KB)
3.

Download (120KB)
4.

Download (57KB)
5.

Download (240KB)
6.

Download (86KB)
7.

Download (82KB)

Copyright (c) 2023 Н.Г. Бичан, В.А. Мозгова, Е.Н. Овченкова, М.С. Груздев, Т.Н. Ломова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies