Influence of the Component Ratio in the Ti–B System on the Structure and Properties of Materials Fabricated by SHS Extrusion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We studied how the ratio of precursor titanium and boron powders influenced the combustion temperature and combustion velocity in the high-temperature self-propagating synthesis (SHS) mode, and the microstructure, phase composition, and mechanophysical properties of rods fabricated by SHS extrusion. The subject matters of the study were materials for which the as-batch phase compositions of products were TiB–(20–40) wt % Ti. The formation of boron solid solution in titanium was considered. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and mechanical measurements implied the texture of the prepared materials (TiB whiskers were aligned in the direction in which the external pressure was applied). In all of the composites studied, the conductivity was close to the conductivity of undoped titanium; the electrical resistance increased slightly in response to increasing boron weight fraction. The three-point bending strength of the material increased by a factor of 1.7 at most as the weight fraction of boron solid solution in titanium increased from 20 to 40 wt %.

About the authors

A. S. Konstantinov

Merzhanov Institute of Structural Macrokinetics and Materials Science Problems, Russian Academy of Sciences

Email: mora1997@mail.ru
142432, Chernogolovka, Moscow oblast, Russia

A. P. Chizhikov

Merzhanov Institute of Structural Macrokinetics and Materials Science Problems, Russian Academy of Sciences

Email: mora1997@mail.ru
142432, Chernogolovka, Moscow oblast, Russia

M. S. Antipov

Merzhanov Institute of Structural Macrokinetics and Materials Science Problems, Russian Academy of Sciences

Email: mora1997@mail.ru
142432, Chernogolovka, Moscow oblast, Russia

P. M. Bazhin

Merzhanov Institute of Structural Macrokinetics and Materials Science Problems, Russian Academy of Sciences

Author for correspondence.
Email: mora1997@mail.ru
142432, Chernogolovka, Moscow oblast, Russia

References

  1. Hayat M.D., Singh H., He Z., Cao P. // Composites Part A. 2019. V. 121. P. 418. https://doi.org/10.1016/j.compositesa.2019.04.005
  2. Zhang Y., He S., Yang W. et al. // Mater. 2019. V. 12. № 23. P. 4006. https://doi.org/10.3390/ma12234006
  3. Joseph A.O., Jina Z., Yang H., Matthew S.D. // ACS Appl. Nano Mater. 2020. V. 3. № 8. P. 8208. https://doi.org/10.1021/acsanm.0c01640
  4. Anil V.K., Gupta R.K., Prasad M.J.N.V., Narayana M.S.V.S. // J. Mater. Res. 2021. V. 36. № 3. P. 689. https://doi.org/10.1557/s43578-021-00104-w
  5. Comín R., Cid M.P., Grinschpun L. et al. // J. Appl. Biomater. Funct. Mater. 2017. V. 15. № 3. P. 176. https://doi.org/10.5301/jabfm.5000340
  6. Chen Y., Zhang J., Dai N. et al. // Electrochim. Acta. 2017. V. 232. P. 89. https://doi.org/10.1016/j.electacta.2017.02.112
  7. Sousa L., Alves A.C., Costa N.A. et al. // J. Alloys Compd. 2022. V. 896. № 162965. https://doi.org/10.1016/j.jallcom.2021.162965
  8. Chen T., Li W., Liu D. et al. // Ceram. Int. 2021. V. 47. № 1. P. 755. https://doi.org/10.1016/j.ceramint.2020.08.186
  9. Otte J.A., Zou J., Patel R. et al. // Nanomater. 2020. V. 10. № 12. P. 1. https://doi.org/10.3390/nano10122480
  10. An Q., Huang L., Jiang S. et al. // Ceram. Int. 2020. V. 46. № 6. P. 8068. https://doi.org/10.1016/j.ceramint.2019.12.032
  11. Feng Y., Feng K., Yao C. et al. // Mater. Des. 2018. V. 157. P. 258. https://doi.org/10.1016/j.matdes.2018.07.045
  12. Tao X., Yao Z., Zhang S. et al. // Surf. Coat. Technol. 2018. V. 337. https://doi.org/10.1016/j.surfcoat.2018.01.054
  13. Zhang G., Li S., Qu H. et al. // Adv. Mater. Sci. Eng. 2022. V. 20. 8906135 https://doi.org/10.1155/2022/8906135
  14. Pathi H., Mishri T.K., Panigrahi S.R. et al. // East Eur. J. Phys. 2021. № 3. P. 5. https://doi.org/10.26565/2312-4334-2021-3-01
  15. Sanguigno L., Lepore M.A., Maligno A.R. // Adv. Transdisciplinary Eng. 2021. V. 15. P. 159. https://doi.org/10.3233/ATDE210030
  16. Zhang G., Yuan M., Hou H. // J. Plast. Eng. 2020. V. 27. № 9. P. 117. https://doi.org/10.3969/j.issn.1007-2012.2020.09.017
  17. Weng F., Yu H., Du X. et al. // Ceram. Int. 2022. V. 48. № 5. P. 7056. https://doi.org/10.1016/j.ceramint.2021.11.263
  18. Song Y., Qiu F., Savvakin D. et al. // Mater. 2022. V. 15. № 3. P. 1049. https://doi.org/10.3390/ma15031049
  19. Muhammad D.H., Harshpreet S., Zhen H., Peng C. // Composites Part A. 2019. V. 121. P. 418. https://doi.org/10.1016/j.compositesa.2019.04.005
  20. Van P.P. // Eng. Struct. 2021. V. 229. 111567. https://doi.org/10.1016/j.engstruct.2020.111567
  21. Yang Y., Chen J., Huang Z. // Int. J. Damage Mech. 2020. V. 29. № 1. P. 67. https://doi.org/10.1177/1056789519854488
  22. Dadbakhsh S., Mertens R., Hao L. et al. // Adv. Eng. Mater. 2019. V. 1. 1801144. https://doi.org/10.1002/adem.201801244
  23. Bazhin P.M., Konstantinov A.S., Chizhikov A.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2040. [Бажин П.М., Константинов А.С., Чижиков А.П. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1829. https://doi.org/10.31857/S0044457X22601225].https://doi.org/10.1134/S0036023622601696
  24. Xie L., Ren S., Yin F. // Mater. Charact. 2023. V. 195. 112511. https://doi.org/10.1016/j.matchar.2022.112511
  25. Tian N., Dong L.L., Wang H.L. et al. // J. Alloys Compd. 2021. V. 867. https://doi.org/10.1016/j.jallcom.2021.159093
  26. Wu H., Lei C., Du Y. et al. // Ceram. Int. 2021. V. 47. № 8. P. 11423. https://doi.org/10.1016/j.ceramint.2020.12.269
  27. Huo P., Zhao Z., Du W., Bai P. // Ceram. Int. 2021. V. 47. № 14. P. 19546. https://doi.org/10.1016/j.ceramint.2021.03.292
  28. Wang M., Cui H., Wei N. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. № 4. P. 4250. https://doi.org/10.1021/acsami.7b17286
  29. Peng Y.B., Zhang W., Mei X.L. et al. // Mater. Today Commun. 2020. V. 24. https://doi.org/10.1016/j.mtcomm.2020.101009
  30. Lapshin O.V., Boldyreva E.V., Boldyrev V.V. // Russ. J. Inorg. Chem. 2021. V. 66. № 3. P. 433. [Лапшин О.В., Болдырева Е.В., Болдырев В.В. // Журн. неорган. химии. 2021. Т. 66. № 3. С. 402. https://doi.org/10.31857/S0044457X21030119]https://doi.org/10.1134/S0036023621030116
  31. Chizhikov A.P., Konstantinov A.S., Bazhin P.M. // Russ. J. Inorg. Chem. 2021. V. 66. № 8. P. 1115. [Чижиков А.П., Константинов А.С., Бажин П.М. // Журн. неорган. химии. 2021. Т. 66. № 8. С. 1002. https://doi.org/10.31857/S0044457X21080031]https://doi.org/10.1134/S0036023621080039
  32. Radishevskaya N.I., Nazarova A.Y., L’vov O.V. et al. // Inorg. Mater. 2020. V. 56. № 2. P. 142. [Радишевская Н.И., Назарова А.Ю., Львов О.В. и др. // Неорган. материалы 2020. Т. 56. № 2. С. 151.]https://doi.org/10.1134/S0020168520010112
  33. Zhang X., Xu Q., Han J. et al. // Mater. Sci. Eng. 2003. P. 41. https://doi.org/10.1016/S0921-5093(02)00635-4
  34. Kovalev D.Yu., Konstantinov A.S., Konovalikhin S.V. et al. // Combust. Explosion Shock Waves. 2020. V. 56. № 6. P. 648. [Ковалев Д.Ю., Константинов А.С., Коновалихин С.В. и др. // Физика горения и взрыва. 2020. Т. 56. № 6. С. 33. https://doi.org/10.15372/FGV20200604]https://doi.org/10.1134/S0010508220060040
  35. Podlesov V.V., Radugin A.V., Stolin A.M., Merzhanov A.G. // Inzhenerno-Fizicheskii Zhurnal. 1992. V. 63. № 5. P. 525.
  36. Bazhin P.M., Konstantinov A.S., Chizhikov A.P. et al. // Mater. Today Commun. 2020. V. 25. P. 101484. https://doi.org/10.1016/j.mtcomm.2020.101484
  37. Stel’makh L.S., Stolin. A.M., Bazhin. P.M. // Inorg. Mater. 2020. V. 56. № 7. P. 695. https://doi.org/10.1134/S0020168520070158
  38. Konstantinov A.S., Bazhin P.M., Stolin A.M. et al. // Composites Part A. 2018. V. 108. P. 79. https://doi.org/10.1016/j.compositesa.2018.02.027
  39. Bazhin P.M., Kostitsyna E.V., Stolin A.M. et al. // Ceram. Int. 2019. V. 45. № 7. P. 9297. https://doi.org/10.1016/j.ceramint.2019.01.188
  40. Bolotskaya A.V., Mikheev M.V. // Refract. Ind. Ceram. 2020. V. 61. № 3. P. 336. https://doi.org/10.1007/s11148-020-00483-3
  41. Antipov M.S., Bazhin P.M., Chizhikov A.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1658. [Антипов М.С., Бажин П.М., Чижиков А.П. и др. // Журн. неорган. химии. 2022. Т. 67. № 10. С. 1498. https://doi.org/10.31857/S0044457X22100361]https://doi.org/10.1134/S0036023622100564
  42. Bazhin P., Chizhikov A., Stolin A. et al. // Ceram. Int. 2021. V. 47 P. 28444. https://doi.org/10.1016/j.ceramint.2021.06.262
  43. Stolin A.M., Bazhin P.M. // J. SHS. 2014. V. 23. № 2. P. 65. https://doi.org/10.3103/S1061386214020113
  44. Bazhin P.M., Stolin A.M., Alymov M.I. // Nanotechnol. Russ. 2014. V. 9. № 11–12. P. 583. https://doi.org/10.1134/S1995078014060020
  45. Bazhin P.M., Kostitsyna E.V., Stolin A.M. et al. // Ceram. Int. 2019. V. 45. № 7. P. 9297.https://doi.org/10.1016/j.ceramint.2019.01.188
  46. Bazhin P.M., Stolin A.M., Shcherbakov V.A. et al. // Dokl. Chem. 2010. V. 430. № 2. P. 58. https://doi.org/10.1134/S0012500810020072

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (299KB)
3.

Download (2MB)
4.

Download (3MB)

Copyright (c) 2023 А.С. Константинов, А.П. Чижиков, М.С. Антипов, П.М. Бажин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies