Effects of the Preparation Method on the Dielectric Properties of Ni–Al Layered Double Hydroxides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ni–Al layered double hydroxides (LDHs) are of interest as functional materials. The effects of preparation methods on the dielectric properties of Ni–Al layered double hydroxides were studied on samples prepared from solution (by coprecipitation and a hydrothermal process) and by plasma technology. The prepared layered structures were characterized by advanced analytical methods. The high ζ potentials of the particles prepared in suspensions evidence their high aggregation stability. X-ray powder diffraction and IR spectroscopy were used to determine the phase composition of samples and to identify the interlayer anion. The plasma between Al and Ni electrodes in distilled bulk water gives rise to the formation of Ni–Al LDHs with hydroxide ion as the interlayer anion. Thermal properties of the structures prepared were studied by thermal analysis. The results of dielectric measurements are presented.

About the authors

A. V. Agafonov

G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

V. D. Shibaeva

G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

A. S. Kraev

G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

N. A. Sirotkin

G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

V. A. Titov

G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: kav@isc-ras.ru
153045, Ivanovo, Russia

A. V. Khlyustova

G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: kav@isc-ras.ru
153045, Ivanovo, Russia

References

  1. Tang S., Yao Y., Chen T. et al. // Anal. Chim. Acta. 2020. V. 1103. P. 32.
  2. Fan G., Li F., Evans D.G. et al. // Chem. Soc. Rev. 2014. V. 43. P. 7040.
  3. Baig N., Sajid M. // Trends Environ. Anal. Chem. 2017. V. 16. P. 1.
  4. Forano C., Bruna F., Mousty C. et al. // Chem. Record. 2018. V. 18. P. 1150.
  5. Mishra G., Dash B., Pandey S. // Appl. Clay Sci. 2018. V. 153. P. 172.
  6. Lahkale R., Elhatimi W., Sadik R. et al. // Appl. Clay Sci. 2018. V. 158. P. 55.
  7. Bouragba F.Z., Elhatimi W., Lahkale R. et al. // Bull. Mater. Sci. 2020. V. 43 P. 1.
  8. Khalaf M.M., Ibrahimov H.G., Ismailov E.H. // Chem. J. 2012. V. 2. P. 118.
  9. Guo T., Yao M.S., Lin Y.H. et al. // CrystEngComm. 2015. V. 17. P. 3551.
  10. Evans D.G., Slade R.C. Structural aspects of layered double hydroxides. Berlin: Springer, 2006.
  11. Khussnutdinov V.R., Isupov V.P. // Russ. J. Appl. Chem. 2020. V. 93. № 5. P. 639. [Хуснутдинов В.Р., Исупов В.П. // Журн. прикл. химии. 2020. Т. 93. № 5. С. 627.]
  12. Hur T.B., Phuoc T.X., Chyu M.K. // Opt. Lasers Eng. 2009. V. 47. № 6. P. 695.
  13. Karpukhin V.T., Malikov M.M., Borodina T.I. et al. // High Temp. 2013. V. 51. P. 277. [Карпухин В.Т., Маликов М.М., Бородина Т.И. и др. // Теплофизика высоких температур. 2013. Т. 51. № 2. С. 311.]
  14. Tao X., Yang C., Huang L. et al. // Appl. Surf. Sci. 2020. V. 507. P. 145053.
  15. Chen H., Zhao Q., Gao L. et al. // ACS Sust. Chem. Eng. 2019. V. 7. № 4. P. 4247.
  16. Levashov E.A., Mukasyan A.S., Rogachev A.S. et al. // Int. Mater. Rev. 2017. V. 62. P. 203.
  17. Prinetto F., Ghiotti G., Graffin P. et al. // Microporous Mesoporous Mater. 2000. V. 39. P. 229.
  18. Agafonov A.V., Sirotkin N.A., Titov V.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 253. [Агафонов А.В., Сироткин Н.А., Титов В.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 3. С. 271.]
  19. Yun S.K., Pinnavaia T.J. // Chem. Mater. 1995. V. 7. P. 348.
  20. Wang S.L., Liu C.H., Wang M.K. et al. // Appl. Clay Sci. 2009. V. 43. P. 79.
  21. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. Part A: Theory and Applications in Inorganic Chemistry. New Jersey: Wiley, 2009.
  22. Cavani F., Trifiro F., Vaccari A. // Catal. Today. 1991. V. 11. P. 173.
  23. Koritnig S., Süsse P. // Tschermaks Min. Petr. Mitt. 1975. V. 22. P. 79.
  24. Roobottom H.K., Jenkins H.D.B., Passmore J. et al. // J. Chem. Educ. 1999. V. 76. P. 1570.
  25. Białas A., Mazur M., Natkański P. et al. // Appl. Surf. Sci. 2016. V. 362. P. 297.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (152KB)
3.

Download (132KB)
4.

Download (113KB)
5.

Download (1MB)
6.

Download (177KB)

Copyright (c) 2023 А.В. Агафонов, В.Д. Шибаева, А.С. Краев, Н.А. Сироткин, В.А. Титов, А.В. Хлюстова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies