Fluorination Reaction Control by Surface Migration of Atomic Fluorine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Fluorination with atomic fluorine seems to be a promising way to functionalize materials, since such processes occur in a wide temperature range with an activation barrier close to zero. Here we demonstrate the ability to control the fluorination of platinum with atomic fluorine using surface migration (diffusion) of adsorbed fluorine atoms (Fads). A change in the concentration of fluorine atoms in the reaction zone is achieved by a change in the direction and magnitude of the diffusion flux of Fads due to the formation of alternative reaction zones. The occurrence of diffusion fluxes is determined by the area of contact of surfaces with the main and alternative reaction zones, which provide conductivity for Fads. The developed approach made it possible to experimentally establish the achievement of equilibrium in the reaction PtF4(g) + 2F(g) = PtF6(g) and measure the equilibrium constant.

About the authors

N. S. Chilingarov

Department of Chemistry, Lomonosov Moscow State University

Email: andrey.borschevsky@gmail.com
Moscow, Russia

A. V. Knot’ko

Department of Material Sciences, Lomonosov Moscow State University

Email: andrey.borschevsky@gmail.com
Moscow, Russia

A. Ya. Borschevsky

Department of Chemistry, Lomonosov Moscow State University

Email: andrey.borschevsky@gmail.com
Moscow, Russia

L. N. Sidorov

Department of Chemistry, Lomonosov Moscow State University

Author for correspondence.
Email: andrey.borschevsky@gmail.com
Moscow, Russia

References

  1. Weinstock B., Malm J.G., Weaver E.E. // J. Amer. Chem. Soc. 1961. P. 4310.
  2. Jones W.E., Scolnik E.G. // Chem. Rev. 1976. P. 563.
  3. Безмельницин В.Н., Легасов В.А., Чайванов B.B. // Докл. акад. наук СССР. 1977. Т. 235. С. 96.
  4. Feng W., Long P., Feng Y. et al. // Adv. Sci. 2016. V. 3. P. 1500413.
  5. Alimi Ar.R., Gerber R.B., Apkarian V.A. // J. Chem. Phys. 1990. V. 92. P. 3551.
  6. Feld J., Kunttu H., Apkarian V.A. // Ibid. 1990. V. 93. P. 1009.
  7. Misochko E.Ya., Akimov A.V., Wight C.A. // Chem. Phys. Lett. 1997. V. 274. P. 23.
  8. Misochko E.Ya., Akimov A.V., Wight C.A. // J. Phys. Chem. A. 1999. V. 103. P. 7972.
  9. Chilingarov N.S., Knot’ko A.V., Shlyapnikov I.M. et al. // Ibid. 2015. V. 119. P. 8452.
  10. Chilingarov N.S., Borschevsky A.Ya., Romanovsky B.V. et al. // J. Phys. Chem. C. 2018. V. 122. P. 26372.
  11. Chilingarov N.S., Rau J.V., Sidorov L.N. et al. // J. Fluorine Chem. A. 2000. V. 104. P. 291.
  12. Чилингаров Н.С., Рау Д.В., Никитин А.В. и др. // Журн. физ. химии. 1997. Т. 71. С. 1455.
  13. Tressaud A., Pintchovski F., Lozano L. et al. // Mat. Res. Bull. 1976. V. 11. P. 689.
  14. Чилингаров Н.С., Скокан Е.В., Рау Д.В. и др. // Журн. физ. химии. 1992. Т. 66. С. 1127.
  15. Drowart J., Chattilon C., Hastie J. et al. // Pure Appl. Chem. 2005. V. 77. P. 683.
  16. Гурвич Л.В. // Вестн. АН СССР. 1983. № 3. С. 54.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (23KB)
3.

Download (36KB)
4.

Download (1MB)
5.

Download (29KB)

Copyright (c) 2023 Н.С. Чилингаров, А.В. Кнотько, А.Я. Борщевский, Л.Н. Сидоров

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies