Calculating the Gibbs Energy of Solvation of Pyridine in Nonaqueous Solvents

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Gibbs energies of the solvation of pyridine (Py) in methanol, acetonitrile, and N,N-dimethylformamide are calculated via quantum chemical modeling. Contributions from universal and specific types of interaction between the Py and solvent molecules to the change in the Gibbs energies of solvation of the aromatic heterocycle are determined when alcohol is replaced with aprotic solvents.

About the authors

I. A. Kuz’mina

Ivanovo State University of Chemistry and Technology

Email: mariia.a.kovanova@gmail.com
153000, Ivanovo, Russia

M. A. Kovanova

Ivanovo State University of Chemistry and Technology

Email: mariia.a.kovanova@gmail.com
153000, Ivanovo, Russia

S. O. Perova

Ivanovo State University of Chemistry and Technology

Author for correspondence.
Email: mariia.a.kovanova@gmail.com
153000, Ivanovo, Russia

References

  1. Шарнин В.А., Усачева Т.Р., Кузьмина И.А. и др. Комплексообразование в неводных средах: Сольватационный подход к описанию роли растворителя. М.: ЛЕНАНД, 2019. 304 с.
  2. Pathania S., Rawal R.K. // Eur. J. Med. Chem. 2018. V. 157. P. 503. https://doi.org/10.1016/j.ejmech.2018.08.023
  3. Матис М.Е., Шмырова А.А., Малых У.В. и др. // Изв. вузов. Химия и хим. технология. 2021. Т. 64. № 10. С. 132. https://doi.org/10.6060/ivkkt.20216410.6489
  4. Pal S. Pyridine: A useful ligand in transition metal complexes // Pyridine. 2018. P. 57–74. https://doi.org/10.5772/intechopen.76986
  5. Nikolaev A., Legault C.Y., Minhao Z., Orellana A. // Org. Lett. 2018. V. 20. № 3. P. 796. https://doi.org/10.1021/acs.orglett.7b03938
  6. Wong V.C.-H., Po C., Leung S.Y.-L. et al. // J. Am. Chem. Soc. 2018. V. 140. № 2. P. 657. https://doi.org/10.1021/jacs.7b09770
  7. Liske A., Wallbaum L., Hölzel T. et al. // Inorg. Chem. 2019. V. 58. № 9. P. 5433. https://doi.org/10.1021/acs.inorgchem.9b00337
  8. Gould N.S., Li S., Cho H.J. et al. // Nat. Commun. 2020. V. 11. P. 1060. https://doi.org/10.1038/s41467-020-14860-6
  9. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 03, Revision B.03 – Gaussian, Inc., Pittsburgh PA, 2003.
  10. Becke A.D. // J. Phys. Rev. A: At., Mol., Opt. Phys. 1988. V. 38. № 6. P. 3098.
  11. Stephens P.J., Devlin F.J., Chablowski C.F., Frisch M.J. // J. Chem. Phys. 1994. V. 98. № 45. P. 11623.
  12. Hertwig R.H., Koch W. // J. Chem. Phys. Lett. 1997. V. 268. № 5. P. 345.
  13. Dunning T.H. // J. Chem. Phys. 1989. V. 90. № 2. P. 1007.
  14. Zhurko G.A., Zhurko D.A. ChemCraft version 1.6 (build 312) ed. http://www.chemcraftprog.com/index.html
  15. Foresman J.B., Keith T.A., Wiberg K.B. et al. // J. Chem. Phys. 1996. V. 100. № 40. P. 16098.
  16. Kuz’mina I.A., Kovanova M.A. // J. Mol. Liq. 2022. V. 349. P. 118112. https://doi.org/10.1016/j.molliq.2021.118112
  17. Мошорин Г.В., Репкин Г.И., Шарнин В.А. // Журн. физ. химии. 2010. Т. 84. № 4. С. 618.
  18. Фиалков Ю.А. Не только в воде. Л.: Химия, 1989. 88 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (28KB)

Copyright (c) 2023 И.А. Кузьмина, М.А. Кованова, С.О. Перова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies