Theoretical Description of Relativistic Terms of a Hydrogen Atom in a Magnetic Field: A Variational Approach in the Basis of Hydrogen-Like Spinors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The incomplete diagonalization of a Dirac Hamiltonian in the basis of the states of an unperturbed atom is used to obtain solutions to the Dirac equation for a hydrogen atom in a constant uniform magnetic field and a wide range of changes in strength. The resulting finite expressions for the matrix elements of the perturbation operator of an arbitrary hydrogen-like atom are used to estimate the action of operators in minimizing the energy dispersion functional. The approach allows precise estimates of the energy of the ground state and values of the energies of transition that are in good agreement with results from earlier studies. It is shown that the proposed technique for minimizing the energy dispersion functional allows the incomplete diagonalization of operators for an arbitrarily chosen block of target states, provided that the initial approximation is correct.

About the authors

G. K. Ozerov

Skolkovo Institute of Science and Technology

Email: ozerow.georgiy.c@yandex.ru
121205, Moscow, Russia

A. A. Bodunov

Faculty of Chemistry, Moscow State University

Email: ozerow.georgiy.c@yandex.ru
119991, Moscow, Russia

D. S. Bezrukov

Skolkovo Institute of Science and Technology

Author for correspondence.
Email: ozerow.georgiy.c@yandex.ru
121205, Moscow, Russia

References

  1. Hanns Ruder, Günter Wunner, Heinz Herold, Florian Geyer. Atoms in Strong Magnetic Fields: Springer Berlin Heidelberg, 1994.
  2. Zeeman P. // Nature. 1897. V. 55. № 1424. P. 347.
  3. Holle A., Wiebusch G., Main J. et al. // Physical review letters. 1986. V. 56. № 24. P. 2594.
  4. Main J., Wiebusch G., Holle A., Welge K.H. // Ibid. 1986. V. 57. № 22. P. 2789.
  5. Holle A., Main J., Wiebusch G. et al. // Ibid.1988. V. 61. № 2. P. 161.
  6. Iu Chun-ho, Welch G.R., Kash M.M. et al. // Physical review letters. 1991. V. 66. № 2. P. 145.
  7. Welch G.R., Kash M.M., Iu Chun-ho et al. // Ibid. 1989. V. 62. № 8. P. 893.
  8. Yafet Y., Keyes R.W., Adams E.N. // J. of Physics and Chemistry of Solids. 1956. V. 1. № 3. P. 137.
  9. Elliott R.J., Loudon R. // Ibid.1960. oct. V. 15. № 3–4. P. 196.
  10. Cabib D., Fabri E., Fiorio G. // Il Nuovo Cimento B (1971–1996). 1972. V. 10. № 1. P. 185.
  11. Ruderman M. // Annual Review of Astronomy and Astrophysics. 1972. V. 10. P. 427.
  12. Kemp J.C., Swedlund J.B., Landstreet J.D., Angel J.R.P. // The Astrophysical J. 1970. V. 161. P. L77.
  13. Garstang R.H. // Reports on Progress in Physics. 1977. V. 40. № 2. P. 105.
  14. Lasenby A., Doran C., Pritchard J. et al. // Physical Review D. 2005. V. 72. № 10. P. 105014.
  15. Schmidt G.D., Allen R.G, Smith P.S., Liebert J. // The Astrophysical J. 1996. may. V. 463. P. 320.
  16. Lai D. // Rev. Mod. Phys. 2001. Aug. V. 73. P. 629.
  17. Mori K., Ho W.C.G. // Monthly Notices of the Royal Astronomical Society. 2007. May. V. 77. № 2. P. 905.
  18. Duncan R.C., Thompson C. // The Astrophysical J. 1992. Jun. V. 392. P. L9.
  19. Kouveliotou C., Dieters S., Strohmayer T. et al. // Nature. 1998. May. V. 393. P. 235.
  20. Praddaude H.C. // Physical Review A. 1972. Oct. V. 6. № 4. P. 1321.
  21. Friedrich H. // Ibid. 1982. V. 26. № 4. P. 1827.
  22. Liu C-R., Starace A.F. // Ibid. 1987. V. 35. № 2. C. 647.
  23. Rau A.R.P., Spruch L. // The Astrophysical J. 1976. V. 207. P. 671.
  24. Rosner W., Wunner G., Herold H., Ruder H. // J. of Physics B: Atomic and Molecular Physics (1968–1987). 1984. V. 17. № 1. P. 29.
  25. Forster H., Strupat W., Rosner W. et al. // J. of Physics B: Atomic and Molecular Physics (1968–1987). 1984. V. 17. № 7. P. 1301.
  26. Handy C.R., Bessis D., Sigismondi G., Morley T.D. // Physical review letters. 1988. V. 60. № 4. P. 253.
  27. Shertzer J. // Physical Review A. 1989. V. 39. № 8. P. 3833.
  28. Fonte G., Falsaperla P., Schiffrer G., Stanzial D. // Ibid. 1990. V. 41. № 11. P. 5807.
  29. Stubbins C., Das K., Shiferaw Y. // J. of Physics B: Atomic, Molecular and Optical Physics. 2004. V. 37. № 10. P. 2201.
  30. Lindgren K.A.U., Virtamo J.T. // Ibid. 1979. V. 12. № 21. P. 3465.
  31. Manakov N.L., Rapoport L.P., Zapryagaev S.A. // Ibid. 1974. V. 7. № 9. P. 1076.
  32. Szmytkowski R. // Physical Review A. 2002. V. 65. № 3. P. 032314.
  33. Poszwa A., Rutkowski A. // Ibid. 2004. V. 69. № 2. P. 062320.
  34. Rutkowski A. // J. of Physics B: Atomic and Molecular Physics. 1986. V. 19. № 2. P. 149.
  35. Chen Z., Goldman S.C. // Physical Review A. 1991. V. 44. № 7. P. 4459.
  36. Chen Z., Goldman S.C. // Ibid. 1992. V. 45. № 3. P. 1722.
  37. Goldman S.C., Chen Z. // Physical review letters. 1991. V. 67. № 11. P. 1403.
  38. Chen Z., Fonte G., Goldman S.C. // Phys. Rev. A. 1994. Nov. V. 50. P. 3838.
  39. Hill R.N., Krauthauser C. // Physical review letters. 1994. V. 72. № 14. P. 2151.
  40. Weaver D.L. // Journal of Mathematical Physics. 1977. V. 18. № 2. P. 306.
  41. Swainson R.A., Drake G.W.F. // J. of Physics A: Mathematical and General. 1991. V. 24. № 1. P. 79.
  42. Kutzelnigg W. // Chemical Physics. 2012. feb. V. 395. P. 16.
  43. Sun S., Stetina T.F., Zhang T. et al. // J. of Chemical Theory and Computation. 2021. V. 17. № 6. P. 3388.
  44. Chen J.-L., Deng D.-L., Hu M.-G. // Physical Review A. 2008. V. 77. № 3. P. 034102.
  45. Lanczos C. // J. of Research of the National Bureau of Standards. 1950. V. 45. № 4. P. 255.
  46. Judd B.R. Operator techniques in atomic spectroscopy: New York, McGraw-Hill Book Co., Inc., 1963. V. 276. P. 82.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (21KB)
3.

Download (74KB)
4.

Download (113KB)

Copyright (c) 2023 Г.К. Озеров, А.А. Бодунов, Д.С. Безруков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies