Quantum-Chemical Modeling of Ag/CeO2 Nanoscale Catalysts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The authors summarize results from calculations using the density functional theory for atoms and small silver clusters on surfaces of nanostructured cerium(IV) oxide, along with the adsorption and transformations of O2 and CO molecules on these systems. Stoichiometric Ce21O42, which has {100} and {111} nanofacets with adsorption centers containing four and three oxygen atoms, is used to model surfaces of cerium oxide. It is shown the O4-center is a center of the selective adsorption of metal atoms. A silver atom on an O3‑center is less stable but it shows a greater ability to activate an O2 molecule. Results from calculations on the {100} and {111} faces of Ce21O42 nanoparticles are compared to data for infinite CeO2(100) and CeO2(111) surfaces. The efficiency of Ag/Ce21O42 atomic complexes is shown in the oxidation of carbon monoxide.

About the authors

E. A. Shor

Krasnoyarsk Scientific Center, Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences

Email: eshor1977@gmail.com
660036, Krasnoyarsk, Russia

A. M. Shor

Krasnoyarsk Scientific Center, Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences

Email: eshor1977@gmail.com
660036, Krasnoyarsk, Russia

V. A. Nasluzov

Krasnoyarsk Scientific Center, Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: eshor1977@gmail.com
660036, Krasnoyarsk, Russia

References

  1. Muravev V., Simons J.F.M., Parastaev A. et al. // Angew. Chem. Int. Ed. 2022. V. 61. e202200434.
  2. Boronin A.I., Slavinskaya E.M., Figueroba A. et al. // Appl. Catal. B Env. 2021. V. 286. 119931.
  3. Grabchenko M.V., Mamontov G.V., Zaikovskii V.I. et al. // Ibid. 2020. V. 260. 118148.
  4. Kibis L.S., Svintsitskiy D.A., Kardash T.Yu. et al. // Appl. Cat. A.: Gen. 2019. V. 570. P. 51.
  5. Bera P., Patil K.C., Hegde M.S. // Phys. Chem. Chem. Phys. 2000, V. 2. P. 3715.
  6. Guo C., Wei S., Zhou S. et al. // ACS Appl. Mater. Interfaces 2017. V. 9. P. 26107.
  7. Carraro F., Fapohunda A., Paganini M.C. et al. // ACS Appl. Nano Mater. 2018. V. 1. P. 1492.
  8. Fan L., Fujimoto K. // J. Catal. 1997. V. 172. P. 238.
  9. Farmer J.A., Campbell C.T. // Science. 2010. V. 329. P. 933.
  10. Spezzati G., Su Y., Hofmann J.P. et al. // ACS Catal. 2017. V. 7. P. 6887.
  11. Machida M., Murata Y., Kishikawa K. et al. // Chem. Mater. 2008. V. 20. P. 4489.
  12. Pentyala P., Deshpande P.A // Ind. Eng. Chem. Res. 2019. V. 58. P. 7964.
  13. Liberto G., Tosoni S., Cipriano L.A. et al. // Acc. Mater. Res. 2022. V. 3. P. 986.
  14. Paier J., Penschke C., Sauer J. // Chem. Rev. 2013. V. 113. P. 3949.
  15. Spezzati G., Benavidez A.D., DeLaRiva A.T. et al. // Appl. Catal. B 2019. V. 243. P. 36.
  16. Branda M.M., Ferrulo R.M., Causà M. et al. // J. Phys. Chem. C. 2011. V. 115. P. 3716.
  17. Sun C., Li H., Chen L. // Energy Environ. Sci. 2012. V. 5. P. 8475.
  18. Bruix A., Lykhach Y., Matolínová I. et al. // Angew. Chem. Int. Ed. 2014. V. 53. P. 10525.
  19. Figueroba A., Kovács G., Bruix A. et al. // Catal. Sci. Technol. 2016. V. 6. P. 6806.
  20. Sk M.A., Kozlov S.M., Lim K.H. et al. // J. Mater. Chem. A. 2014. V. 2. P. 18329.
  21. Kozlov S.M., Neyman K.M. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 7823.
  22. Bruix A., Neyman K.M. How to design models for ceria nanoparticles: challenges and strategies for describing nanostructured reducible oxides. In: Computational Modelling of Nanoparticles. Eds. S.T. Bromley, S.M. Woodley, Series: V. 12: Frontiers of Nanoscience, Oxford: Elsevier. 2019. P. 55–99.
  23. Migani A., Vaysilov G.N., Bromley S.T. et al. // J. Mater. Chem. 2011. V. 20. P. 10535.
  24. Boronat M., López-Ausens T., Corma A. // Surf. Sci. 2016. V. 648. P. 212.
  25. Kresse G. // Phys. Rev. B. 1993. V. 47. P. 558.
  26. Kresse G. // Ibid. 1996. V. 54. P. 11169.
  27. Blöchl P.E. // Ibid. B. 1994. V. 50. P. 17953.
  28. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. P. 1758.
  29. Rohrbach A., Hafner J., Kresse G. // J. Phys.: Condens. Matter. 2003. V. 15. P. 979.
  30. Perdew J.P., Chevary J.A., Vosko S.H. et al. // Phys. Rev. B. 1992. V. 46. P. 6671; Erratum. Phys. Rev. B. 1993. V. 48. P. 4978.
  31. Vayssilov G.N., Migani A., Neyman K. // J. Phys. Chem. C. V. 2011. V. 115 P. 16081.
  32. Bruix A., Migani A., Vayssilov G.N. // Phys. Chem. Chem. Phys. 2011. V. 13. P. 11384.
  33. Migani A., Vayssilov G.N., Bromley S.T. // Chem. Comm. 2010. V. 46. P. 5936.
  34. Branda M.M., Hernández N.C., Sanz J.F. et al. // J. Phys. Chem. C. 2010. V. 114. P. 1934.
  35. Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. P. 5188.
  36. Nasluzov V.A., Ivanova-Shor E.A., Shor A.M. et al. // Surf. Sci. 2019. V. 681. P. 38.
  37. Chen L.-J., Tang Y., Cui L. et al. // J. Power Sources. 2013. V. 234. P. 69.
  38. Tang Y., Zhang H., Cui L. et al. // Ibid. 2012. V. 197. P. 28.
  39. Preda G., Pacchioni G. // Catal. Today. 2011. V. 177 P. 31.
  40. Shor A.M., Laletina S.S., Ivanova-Shor E.A. et al. // Comp. Theor. Chem. 2018. V. 1144. P. 56.
  41. Klacar S., Hellman A., Panas I. et al. // J. Phys. Chem. C. 2010. V. 114. P. 12610.
  42. Benedetti F., Luches P., Spadaro M.C. et al. // J. Phys. Chem. C. 2015. V. 119. P. 6024.
  43. Наслузов В.А., Нейман К., Шор А.М. и др. // Ж. СФУ. Сер. Химия. 2016. Т. 9. С. 281.
  44. Zhao Y., Teng B.-T., Wen X.-D. et al. // J. Phys. Chem. C. 2012. V. 116. P. 15986.
  45. Preda G., Migani A., Neyman K.M. et al. // Ibid. 2011. V. 115. P. 5817.
  46. Shor A.M., Laletina S.S., Ivanova-Shor E.A. et al. // Surf. Sci. 2014. V. 630. P. 265.
  47. Shimizu K., Kawachi H., Satsuma A. // Appl. Catal. B. 2010. V. 96. P. 169.
  48. Nasluzov V.A., Ivanova-Shor E.A., Shor A.M. et al. // Materials. 2021. V. 14. 6888.
  49. Hulva J., Meier M., Bliem R. et al. // Science. 2021. V. 371. P. 375.
  50. Wu Z., Li M., Overbury S.H. // J. Catal. 2012. V. 285. P. 61.
  51. Chen S., Cao T., Gao Y. et al. // J. Phys. Chem. C 2016. V. 120. P. 21472.
  52. Binet C., Badri A., Boutonnet-Kizling M. et al. // J. Chem. Soc. Faraday Trans. 1994. V. 90. P. 1023.
  53. Kafafi Z.H., Hauge R.H., Billups W.E. et al. // Inorg. Chem. 1984. V. 23. P. 177.
  54. Vayssilov G.N., Mihaylov M., Petkov P.S. et al. // J. Phys. Chem. C. 2011. V. 115. P. 23435.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (231KB)
3.

Download (1MB)
4.

Download (633KB)
5.

Download (816KB)
6.

Download (460KB)

Copyright (c) 2023 Е.А. Шор, А.М. Шор, В.А. Наслузов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies