Eksperimental'noe issledovanie prototipa sverkhprovodyashchego sigma-neyrona dlya adiabaticheskikh neyronnykh setey

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The artificial neuron proposed earlier for use in superconducting neural networks is experimentally studied. The fabricated sample is a single-junction interferometer, part of the circuit of which is shunted by an additional inductance, which is also used to generate an output signal. A technological process has been developed and tested to fabricate a neuron in the form of a multilayer thin-film structure over a thick superconducting screen. The transfer function of the fabricated sample, which contains sigmoid and linear components, is experimentally measured. A theoretical model is developed to describe the relation between input and output signals in a practical superconducting neuron. The derived equations are shown to approximate experimental curves at a high level of accuracy. The linear component of the transfer function is shown to be related to the direct transmission of an input signal to a measuring circuit. Possible ways for improving the design of the sigma neuron are considered.

About the authors

A. S. Ionin

Institute of Solid State Physics, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: sh.b.malinkin@rambler.ru
142432, Chernogolovka, Moscow oblast, Russia; 141700, Dolgoprudnyi, Moscow oblast, Russia

N. S. Shuravin

Institute of Solid State Physics, Russian Academy of Sciences

Email: sh.b.malinkin@rambler.ru
142432, Chernogolovka, Moscow oblast, Russia

L. N. Karelina

Institute of Solid State Physics, Russian Academy of Sciences

Email: sh.b.malinkin@rambler.ru
142432, Chernogolovka, Moscow oblast, Russia

A. N. Rossolenko

Institute of Solid State Physics, Russian Academy of Sciences

Email: sh.b.malinkin@rambler.ru
142432, Chernogolovka, Moscow oblast, Russia

M. S. Sidel'nikov

Institute of Solid State Physics, Russian Academy of Sciences

Email: sh.b.malinkin@rambler.ru
142432, Chernogolovka, Moscow oblast, Russia

S. V. Egorov

Institute of Solid State Physics, Russian Academy of Sciences

Email: sh.b.malinkin@rambler.ru
142432, Chernogolovka, Moscow oblast, Russia

V. I. Chichkov

National University of Science and Technology MISiS

Email: sh.b.malinkin@rambler.ru
119049, Moscow, Russia

M. V. Chichkov

National University of Science and Technology MISiS

Email: sh.b.malinkin@rambler.ru
119049, Moscow, Russia

M. V. Zhdanova

National University of Science and Technology MISiS

Author for correspondence.
Email: sh.b.malinkin@rambler.ru
119049, Moscow, Russia

References

  1. C. Bartolozzi, G. Indiveri, and E. Donati, Embodied Neuromorphic Intelligence, Naturecommunications 13, 1 (2022).
  2. C. D. Schuman, S. R. Kulkarni, M. Parsa et al., Opportunities for Neuromorphic Computing Algorithms and Applications, Nature Computational Science 2, 10 (2022).
  3. B. J. Shastri, A. N. Tait, T. Ferreira de Lima et al., Photonics for Arti cial Intelligence and Neuromorphic Computing, Nature Photonics 15, 102 (2021).
  4. M. Davies, A. Wild, G. Orchard et al., Advancing Neuromorphic Computing with Loihi: A Survey of Results and Outlook, Proceedings of the IEEE 109, 911 (2021).
  5. D. Markovi'c, A. Mizrahi, D. Querlioz et al., Physics for Neuromorphic Computing, Nature Reviews Physics 2, 499 (2020).
  6. D. Markovi'c and J. Grollier, Quantum Neuromorphic Computing, Applied Physics Letters 117, 150501 (2020).
  7. Y. van De Burgt, A. Melianas, S. T. Keene et al., Organic Electronics for Neuromorphic Computing, Nature Electronics 1, 386 (2018).
  8. C. D. Schuman, T. E. Potok, R. M. Patton et al., A Survey of Neuromorphic Computing and Neural Networks in Hardware, arXiv preprint arXiv:1705.06963 (2017).
  9. G. W. Burr, R. M. Shelby, A. Sebastian et al., Neuromorphic Computing Using Non-volatile Memory, Advances in Physics: X, 2, 89 (2017).
  10. Furber, S. Large-scale neuromorphic computing systems, Journal of neural engineering 13, 051001 (2016).
  11. S. K. Esser, R. Appuswamy, P. Merolla et al., Backpropagation for Energy-E cient Neuromorphic Computing, Advances in neural information processing systems 28 (2015).
  12. H. Markram, E. Muller, S. Ramaswamy et al., Reconstruction and Simulation of Neocortical Microcircuitry, Cell 163, 456 (2015).
  13. D. Monroe, Neuromorphic Computing Gets Ready for the (Really) Big Time, Communications of the ACM 57, 13 (2014).
  14. https://videocardz.com/newz/tesla-d1-chip-features-50-billion-transistors-scales-up-to-1-1-exa ops-with-exapod
  15. R. Irwin, S. Dimitriadis, J. He et al., Chemformer: a Pretrained Transformer for Computational Chemistry, Machine Learning: Science and Technology 3, 015022 (2022).
  16. H. Tao, T. Wu, M. Aldeghi et al., Nanoparticle Synthesis Assisted by Machine Learning, Nature Reviews Materials 6, 701 (2021).
  17. G. R. Khattak, S. Vallecorsa, F. Carminati et al., High Energy Physics Calorimeter Detector Simulation Using Generative Adversarial Networks with Domain Related Constraints, IEEE Access 9, 108899 (2021).
  18. Y. Meurice, J. C. Osborn, R. Sakai et al., Tensor Networks for High Energy Physics: Contribution to Snowmass 2021, arXiv preprint arXiv:2203.04902 (2022).
  19. R. Wang and R. Yu, Physics-guided Deep Learning for Dynamical Systems: A Survey, arXiv preprint arXiv:2107.01272 (2021).
  20. J. Gilman, L. Walls, L. Bandiera et al., Statistical Design of Experiments for Synthetic Biology, ACS Synthetic Biology 10, 1 (2021).
  21. Y. Ren, T. Chakraborty, S. Doijad et al., Prediction of Antimicrobial Resistance Based on Whole- Genome Sequencing and Machine Learning, Bioinformatics 38, 325 (2022).
  22. J. Gangiredla, H. Rand, D. Benisatto et al., GalaxyTrakr: a Distributed Analysis Tool for Public Health Whole Genome Sequence Data Accessible to Non-bioinformaticians, BMC genomics 22, 1 (2021).
  23. https://irds.ieee.org/editions/2022/more-moore
  24. https://irds.ieee.org/editions/2022/irds%E2%84%A2-2022-cryogenic-electronics-and-quantum-information-processing
  25. C. E. Leiserson, N. C. Thompson, J. S. Emer et al., There's Plenty of Room at the Top: What Will Drive Computer Performance after Moore's Law? Science 368, eaam9744 (2020).
  26. T. N. Theis and H. S. P. Wong, The End of Moore's Law: A New Beginning for Information Technology, Computing in Science Engineering 19, 41 (2017).
  27. I. I. Soloviev, N. V. Klenov, S. V. Bakurskiy et al., Beyond Moore's Technologies: Operation Principles of a Superconductor Alternative, Beilstein Journal of Nanotechnology 8, 2689 (2017).
  28. https://www.technologyreview.com/2020/02/24/905789/were-not-prepared-for-the-end-of-moores-law
  29. M. Campbell, Computational Acceleration: O ense in Depth, Computer 54, 55 (2021).
  30. https://www.techpowerup.com/284936/intel-rebadges-10nm-enhanced-super n-node-as-intel-7-invents-other-creative-node-names?cp=2
  31. O. A. Mukhanov, V. K. Semenov, and K. K. Likharev, Ultimate Performance of RSFQ Logic Circuits, IEEE Transactions on Magnetics 23, 759 (1987).
  32. D. E. Kirichenko, S. Sarwana, and A. F. Kirichenko, Zero Static Power Dissipation Biasing of RSFQ Circuits, IEEE Transactions on Applied Superconductivity 21, 776 (2011).
  33. O. A. Mukhanov, Energy-E cient Single Flux Quantum Technology, IEEE Transactions on Applied Superconductivity, 21, 760 (2011).
  34. M. H. Volkmann, A. Sahu, C. J. Fourie et al., Implementation of Energy E cient Single Flux Quantum Digital Circuits with Sub-aJ/bit Operation, Superconductor Science and Technology 26, 015002 (2012).
  35. M. Tanaka, M. Ito, A. Kitayama et al., 18-GHz, 4.0- aJ/bit Operation of Ultra-Low-Energy Rapid Single- Flux-Quantum Shift Registers, Japanese Journal of Applied Physics 51, 053102 (2012).
  36. Q. P. Herr, A. Y. Herr, O. T. Oberg et al., Ultralow-power Superconductor Logic, Journal of Applied Physics 109, 103903 (2011).
  37. A. F. Kirichenko, I. V. Vernik, J. A. Vivalda et al., ERSFQ 8-bit Parallel Adders as a Process Benchmark, IEEE Transactions on Applied Superconductivity 25, 1 (2014).
  38. A. F. Kirichenko, I. V. Vernik, O. A. Mukhanov et al., ERSFQ 4-to-16 Decoder for Energy-E cient RAM, IEEE Transactions on Applied Superconductivity 25, 1 (2014).
  39. I. V. Vernik, A. F. Kirichenko, O. A. Mukhanov et al., Energy-E cient and Compact ERSFQ Decoder for Cryogenic RAM, IEEE Transactions on Applied Superconductivity 27, 1 (2016).
  40. N. K. Katam, O. Mukhanov, and M. Pedram, Simulation Analysis and Energy-Saving Techniques for ERSFQ Circuits, IEEE Transactions on Applied Superconductivity 29, 1 (2019).
  41. M. A. Manheimer, Cryogenic Computing Complexity Program: Phase 1 Introduction, IEEE Transactions on Applied Superconductivity 25, 1 (2015).
  42. A. F. Kirichenko, I. V. Vernik, M. Y. Kamkar et al., ERSFQ 8-bit Parallel Arithmetic Logic Unit, IEEE Transactions on Applied Superconductivity 29, 1 (2019).
  43. N. Takeuchi, D. Ozawa, Y. Yamanashi et al., An Adiabatic Quantum Flux Parametron as an Ultralow-power Logic Device, Superconductor Science and Technology 26, 035010 (2013).
  44. V. Semenov, G. Danilov, and D. Averin, Negative- Inductance SQUID as the Basic Element of Reversible Josephson-Junction Circuits, IEEE Transactions on Applied Superconductivity 13, 938 (2003).
  45. V. Semenov, G. Danilov, and D. Averin, Classical and Quantum Operation Modes of the Reversible Josephson-Junction Logic Circuits, IEEE Transactions on Applied Superconductivity 17, 455 (2007).
  46. И. И. Соловьев, Г. С. Хисматуллин, Н. В. Кленов и др., π-контакты в ячейках адиабатической сверхпроводниковой логики, Радиотехника и электроника 67, 1232 (2022).
  47. N. Takeuchi, Y. Yamanashi, and N. Yoshikawa, Adiabatic Quantum-Flux-Parametron Cell Library Adopting Minimalist Design, Journal of Applied Physics 117, 173912 (2015).
  48. Q. Xu, Y. Yamanashi, C. L. Ayala et al, Design of an Extremely Energy-E cient Hardware Algorithm Using Adiabatic Superconductor Logic, 2015 15th International Superconductive Electronics Conference (ISEC), Nagoya, Japan (2015), p. 1.
  49. A. E. Schegolev, N. V. Klenov, I. I. Soloviev et al., Adiabatic Superconducting Cells for Ultra-low-power Arti cial Neural Networks, Beilstein journal of nanotechnology 7, 1397 (2016).
  50. N. V. Klenov, A. E. Schegolev, I. I. Soloviev et al., Energy E cient Superconducting Neural Networks for High-speed Intellectual Data Processing Systems, IEEE Transactions on Applied Superconductivity 28, 1301006 (2018).
  51. I. I. Soloviev, A. E. Schegolev, N. V. Klenov et al., Adiabatic Superconducting Arti cial Neural Network: Basic Cells, Journal of Applied Physics 124, 152113 (2018).
  52. N. V. Klenov, A. V. Kuznetsov, A. E. Schegolev et al., A Neuron Based on a Single Flux Qubit, Low Temperature Physics 45, 769 (2019).
  53. S. Bakurskiy, M. Kupriyanov, N. V. Klenov et al., Controlling the Proximity in a Co/Nb Multilayer: the Properties of Electronic Transport, Beilstein Journal of Nanotechnology 11, 1336 (2020).
  54. A. E. Schegolev, N. V. Klenov, I. I. Soloviev et al., Superconducting Neural Networks: from an Idea to Fundamentals and, further, to Application, Nanobiotechnology Reports 16, 811 (2021).
  55. A. E. Schegolev, N. V. Klenov, I. I. Soloviev et al., Learning Cell for Superconducting Neural Networks, Superconductor Science and Technology 34, 015006 (2021).
  56. M. Bastrakova, A. Gorchavkina, A. Schegolev et al., Dynamic Processes in a Superconducting Adiabatic Neuron with Non-shunted Josephson Contacts, Symmetry 13, 1735 (2021).
  57. A. E. Schegolev, N. V. Klenov, S. V. Bakurskiy et al., Tunable Superconducting Neurons for Networks Based on Radial Basis Functions, Beilstein Journal of Nanotechnology 13, 444 (2022).
  58. M. V. Bastrakova, D. S. Pashin, D. A. Rybin et al., A Superconducting Adiabatic Neuron in a Quantum Regime, Beilstein Journal of Nanotechnology 13, 653 (2022).
  59. L. N. Kanal, Perceptron. In Encyclopedia of Computer Science John Wiley and Sons: Chichester, UK (2003).
  60. В. В. Шмидт, Введение в физику сверхпроводников, М.: МЦНМО, Изд. 2-е (2000).
  61. А. Бароне и Дж. Паттерно, Эффект Джозефсона, Мир, Москва (1984).
  62. К. К. Лихарев, Введение в динамику джозефсоновских переходов, Наука, Москва (1985).
  63. Yu. M. Shukrinov, I. R. Rahmonov, K. V. Kulikov et al., Modeling of LC-shunted Intrinsic Josephson Junctions in High-Tc Superconductors, Superconductor Science and Technology 30, 024006 (2017).
  64. Yu. M. Shukrinov, I. R. Rahmonov, and G. Filatrella, Dependence of the Maximal Superconducting Current on the Resonance Frequency in a Shunted Josephson Junction, Journal of Experimental and Theoretical Physics 125, 781 (2017).
  65. S. K. Tolpygo, J. L. Mallek, V. Bolkhovsky et al., Progress toward Superconductor Electronics Fabrication Process with Planarized NbN and NbN/Nb Layers, IEEE Transactions on Applied Superconductivity 33, 1 (2023).
  66. М. С. Шевченко, Л. В. Филиппенко, О. С. Киселев и др., Джозефсоновские туннельные переходы с интегральным СИН-шунтированием, Физика твердого тела 64, 1223 (2022).
  67. M. S. Shevchenko, A. A. Atepalikhin, F. V. Khan et al., Shunted Josephson Junctions and Optimization of Niobium Integrated Matching Circuits, IEEE Transactions on Applied Superconductivity 32, 1100205 (2022).
  68. Gubin, K. Il'in, S. Vitusevich et al., Dependence of Magnetic Penetration Depth on the Thickness of Superconducting Nb Thin Films, Physical Review B 72, 064503 (2005).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies