Study of Sorption of Chlortetracycline Hydrochloride and Its Subsequent Determination by Capillary Zone Electrophoresis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work deals with the development of an approach to the determination of chlortetracycline, which combines the preconcentration of the analyte with its subsequent determination by capillary zone electrophoresis. The conditions that ensure the lowest value of the limit of determination for chlortetracycline in aqueous solutions using a Kapel-105M capillary electrophoresis system (Lumex, Russia) are determined, i.e., temperature, time and pressure of sample injection, background electrolyte composition, and detection wavelength. It is shown that the stability of a chlortetracycline solution is maximum at a storage temperature of 0.5°С in the absence of buffer systems or in using a dilute ammonium acetate buffer solution. It is found that the recovery of chlortetracycline by strongly acidic cation exchangers KU-1, KU-2 is higher compared to that by KB-4 and KB-4P2, bearing weakly acidic functional groups. The conditions under which the recovery of the analyte by KU-1 from a phosphate buffer solution is about 90% are determined.

About the authors

A. I. Gorodilova

Ural Federal University named after the first President of Russia B.N. El’tsin (UrFU), 620002, Yekaterinburg, Russia

Email: anastasia29gor@yandex.ru
Россия, 620002, Свердловская обл., Екатеринбург, ул. Мира, 19

E. L. Lebedeva

Ural Federal University named after the first President of Russia B.N. El’tsin (UrFU), 620002, Yekaterinburg, Russia

Email: anastasia29gor@yandex.ru
Россия, 620002, Свердловская обл., Екатеринбург, ул. Мира, 19

Yu. S. Petrova

Ural Federal University named after the first President of Russia B.N. El’tsin (UrFU), 620002, Yekaterinburg, Russia

Email: anastasia29gor@yandex.ru
Россия, 620002, Свердловская обл., Екатеринбург, ул. Мира, 19

L. K. Neudachina

Ural Federal University named after the first President of Russia B.N. El’tsin (UrFU), 620002, Yekaterinburg, Russia

Author for correspondence.
Email: anastasia29gor@yandex.ru
Россия, 620002, Свердловская обл., Екатеринбург, ул. Мира, 19

References

  1. Bilandzic N., Kolanović B.S., Varenina I., Scortichini G., Annunziata L., Brstilo M., Rudan N. Veterinary drug residues determination in raw milk in Croatia // Food Control. 2011. V. 22. № 12. P. 1941. https://doi.org/10.1016/j.foodcont.2011.05.007
  2. Nagel O.G., Molina M.P., Althaus R.L. Optimization of bioassay for tetracycline detection in milk by means of chemometric techniques // Lett. Appl. Microbiol. 2011. V. 52. № 3. P. 245. https://doi.org/10.1111/j.1472-765X.2010.02990.x
  3. Xu H., Mi H.-Y., Guan M.-M., Shan H.-Y., Fei Q., Huan Y.-F., Zhang Z.-Q., Feng G.-D. Residue analysis of tetracyclines in milk by HPLC coupled with hollow fiber membranes-based dynamic liquid-liquid micro-extraction // Food Chem. 2017. V. 232. P. 198. https://doi.org/10.1016/j.foodchem.2017.04.021
  4. Mu G., Liu H., Xu L., Tian L., Luan F. Matrix solid-phase dispersion extraction and capillary electrophoresis determination of tetracycline residues in milk // Food Anal. Methods. 2012. V. 5. P. 148. https://doi.org/10.1007/s12161-011-9225-1
  5. Ibarra I.S., Rodriguez J.A., Miranda J.M., Vega M., Barrado E. Magnetic solid phase extraction based on phenyl silica adsorbent for the determination of tetracyclines in milk samples by capillary electrophoresis // J. Chromatogr. A. 2011. V. 1218. № 16. P. 2196. https://doi.org/10.1016/j.chroma.2011.02.046
  6. García-Ruiz C., Crego A.L., Lavandera J.L., Marina M.L. Rapid separation of tetracycline derivatives and their main degradation products by capillary zone electrophoresis // Electrophoresis. 2001. V. 22. № 13. P. 2775. https://doi.org/10.1002/1522-2683(200108)22:13<2775:: AID-ELPS2775>3.0.CO;2-2
  7. Divya M.P., Rajput Y.S., Sharma R. Synthesis and application of tetracycline imprinted polymer // Anal. Lett. 2010. V. 43. № 6. P. 919. https://doi.org/10.1080/00032710903491039
  8. Wang Y., Xu X.H., Han J., Yan Y.S. Separation/enrichment of trace tetracycline antibiotics in water by [Bmim]BF4–(NH4)2SO4 aqueous two-phase solvent sublation // Desalination. 2011. V. 266. № 1–3. P. 114. https://doi.org/10.1016/j.desal.2010.08.010
  9. Yakout A.A., El-Hady D.A. A combination of β-cyclodextrin functionalized magnetic graphene oxide nanoparticles with β-cyclodextrin-based sensor for highly sensitive and selective voltametric determination of tetracycline and doxycycline in milk samples // RSC Adv. 2016. V. 6. № 48. P. 41675. https://doi.org/10.1039/C6RA03787A
  10. Удалова А.Ю. Сорбционное концентрирование антибиотиков тетрациклиновой группы для их последующего определения. Дис. … канд. хим. наук. М.: Московский государственный университет имени М.В. Ломоносова, 2015. 153 с.
  11. Раменская Г.В. Фармацевтическая химия. М.: Лаборатория знаний, 2021. 637 с.
  12. Daghrir R., Drogui P. Tetracycline antibiotics in the environment: A review // Environ. Chem. Lett. 2013. V. 11. № 3. P. 209. https://doi.org/10.1007/s10311-013-0404-8
  13. Moreno-González D., Lupión-Enríquez I., García-Campaña A.M. Trace determination of tetracyclines in water samples by capillary zone electrophoresis combining off-line and on-line sample preconcentration // Electrophoresis. 2016. V. 37. № 9. P. 1212. https://doi.org/10.1002/elps.201500440

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (71KB)
3.

Download (56KB)
4.

Download (29KB)
5.

Download (31KB)
6.

Download (79KB)
7.

Download (45KB)
8.

Download (66KB)
9.

Download (64KB)

Copyright (c) 2023 А.И. Городилова, Е.Л. Лебедева, Ю.С. Петрова, Л.К. Неудачина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies