The State of the Haemostasis System under Conditions of Immobilization Stress against the Background of Experimental Metabolic Syndrome

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The state of the haemostasis system under conditions of immobilization stress against the background of metabolic syndrome (MS) in male Wistar rats was studied. Two series of experiments were conducted using single and multiple immobilization effects. It was shown that the development of MS with prolonged maintenance of rats on a high-calorie diet led to a decrease in anticoagulant-fibrinolytic and antiplatelet potential of blood. In the plasma of intact rats subjected to both single and multiple immobilization, an increase in blood clotting and a decrease in fibrinolysis were found. At the same time, the use of multiple immobilization effects in comparison with single immobilization contributed to a more pronounced increase in platelet aggregation. The combination of both single and multiple immobilization and MS in rats caused a significant decrease in fibrinolysis, anticoagulant activity of blood and increased platelet aggregation. However, in the case of repeated immobilization exposure, an even more significant increase in ADP-dependent platelet aggregation was observed. A comparative analysis of the indicators of primary and plasma haemostasis under these experimental conditions allows us to conclude that immobilization, regardless of its duration, aggravates the state of hypercoagulation in rats with MS. Moreover, repeated immobilization stress on the background of metabolic disorders leads to more pronounced hypercoagulation shifts due to an increase in platelet aggregation by 2 times compared with intact animals.

About the authors

M. E. Grigorjeva

Lomonosov Moscow State University

Author for correspondence.
Email: mgrigorjeva@mail.ru
Russia, Moscow

T. Y. Obergan

Lomonosov Moscow State University

Email: mgrigorjeva@mail.ru
Russia, Moscow

A. V. Korobovsky

Moscow Aviation Institute (National Research University)

Email: mgrigorjeva@mail.ru
Russia, Moscow

References

  1. Баринов В.Е., Лобастов К.В., Кузнецов Н.А., Неверов Н.И. “Тромбоз авиапутешественников”: факторы риска, особенности поражения и подходы к профилактике // Флебология. 2011. Т. 5. № 1. С. 8–13.
  2. Бокарев И.Н. Гематология для практического врача. М.: Мед. информ. агентство, 2018. 344 с.
  3. Григорьева М.Е., Ляпина Л.А. Роль пептидов глипролинового ряда в регуляции системы гемостаза при стрессогенных воздействиях // Успехи соврем. биол. 2020. Т. 140. № 1. С. 19–25.
  4. Григорьева М.Е., Ляпина Л.А., Оберган Т.Ю. Регуляция глипролинами первичного гемостаза и сосудисто-эндотелиальной функции организма при метаболическом синдроме // Тромбоз, гемостаз и реология. 2019. Т. 79. № 3. С. 32–38.
  5. Кузник Б.И., Хавинсон В.Х., Тарновская С.И., Линькова Н.С. Эпигенетическое действие регуляторных пептидов на цитокиновый профиль и систему гемостаза // Вестн. гематол. 2013. Т. 9. № 2. С. 29–33.
  6. Ляпина Л.А., Григорьева М.Е., Оберган Т.Ю., Шубина Т.А. Теоретические и практические вопросы изучения функционального состояния противосвертывающей системы крови. М.: Адвансед солюшенз, 2012. 160 с.
  7. Оберган Т.Ю., Григорьева М.Е. Исследование параметров гемостаза, липидного и углеводного обмена у крыс с модифицированной моделью экспериментального метаболического синдрома // Соврем. технол. в медицине. 2016. Т. 8. № 4. С. 303–305.
  8. Шахматов И.И. Влияние однократной иммобилизации различной интенсивности на реакции системы гемостаза // Бюл. СО РАМН. 2011. Т. 31. № 4. С. 34–38.
  9. Amin S.N., Gamat S.M., Esmail R.S. et al. Cognitive effects of acute restraint stress in male albino rats and the impact of pretreatment with quetiapine versus ghrelin // J. Integr. Neurosci. 2014. V. 13. № 4. P. 689–692.
  10. Boddi M., Peris A. Deep vein thrombosis in intensive care // Adv. Exp. Med. Biol. 2017. V. 906. P. 167–181.
  11. Bovolini A., Garcia J., Andrade M.A., Duarte J.A. Metabolic syndrome pathophysiology and predisposing factors // Int. J. Sport. Med. 2021. V. 42. № 3. P. 199–214.
  12. Byard R.W. Deep venous thrombosis, pulmonary embolism and long-distance flights // Foren. Sci. Med. Pathol. 2019. V. 15. № 1. P. 122–124.
  13. Eftekhari S., Alipour F., Aminian O., Saraei M. The association between job stress and metabolic syndrome among medical university staff // J. Diabet. Metab. Disord. 2021. V. 20. № 1. P. 321–327.
  14. Fletcher G.F., Landolfo C., Niebauer J. et al. Promoting and exercise: JACC health promotion series // J. Am. Coll. Cardiol. 2018. V. 72. № 14. P. 1622–1639.
  15. Ghani N.A.A., Abdullah A.A.B.M., Hamid S.A. et al. Visual loss after long-haul flight // Eur. J. Ophthalmol. 2022. V. 32. № 2. P. NP20–NP23.
  16. Grandl G., Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome // Sem. Immunopathol. 2018. V. 40. P. 215–224.
  17. Haider S., Naqvi F., Batool Z. et al. Pretreatment with curcumin attenuates anxiety while strengthens memory performance after one short stress experience in male rats // Brain Res. Bull. 2015. V. 115. P. 1–8.
  18. Klok F.A., Kruip M.J.H.A., van der Meer N.J.M. et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19 // Thromb. Res. 2020. V. 191. P. 145–147.
  19. Koptev M.M., Vynnyk N.I. Morfological substantion for acute immobilization stress-related disorders of adaptation mechanisms // Wiad. Lek. 2017. V. 70 № 4. P. 767–770.
  20. Kuo W., Bratzke L.C., Oakley L.D. et al. The association between psychological stress and metabolic syndrome: a systematic review and meta-analysis // Obesity Rev. 2019. V. 20. P. 1651–1664.
  21. Lemieux I., Despres J.-P. Metabolic syndrome: past, present and future // Nutrients. 2020. V. 12. № 11. P. 3501–3507.
  22. Lippi G., Favaloro E.J. Car travel-related thrombosis: fact or fiction? // Semin. Thromb. Hemost. 2018. V. 44. № 4. P. 327–333.
  23. Mohd Nor N.S., Saimin H., Rahman T. et al. Comparable enhanced prothrombogenesis in simple central obesity and metabolic syndrome // J. Obesity. 2018. V. 2018. P. 1–6. Art. 8508549.
  24. Myers J., Kokkinos P., Nyelin E. Physical activity, cardiorespiratory fitness, and the metabolic syndrome // Nutrients. 2019. V. 11. № 7. P. 1652–1670.
  25. Şabanoğlu C. The secret enemy during a flight: economy class syndrome // Anatol. J. Cardiol. 2021. V. 25 (Suppl. 1). P. 13–17.
  26. Samarghandian S., Azimi-Nezhad M., Farkhondeh T., Samini F. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney // Biomed. Pharmacother. 2017. V. 87. P. 223–229.
  27. Sang Y., Roest M., de Laat B. et al. Interplay between platelets and coagulation // Blood Rev. 2021. V. 46. Art.100733.
  28. Watson H.G., Baglin T.P. Guidelines on travel-related venous thrombosis // Br. J. Haematol. 2011. V. 152. № 1. P. 31–34.
  29. Wilson D., Driller M., Johnston B., Gill N. The prevalence of cardiometabolic health risk factors among airline pilots: a systematic review // Int. J. Environ. Res. Publ. Health. 2022. V. 19. № 8. P. 4848–4870.

Copyright (c) 2023 М.Е. Григорьева, Т.Ю. Оберган, А.В. Коробовский

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies