Partial Cell Reprogramming as a Method of Revitalizing Living Systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Aging and associated diseases are an acute problem of modern biology and medicine. Although aging cannot be prevented at present, its impact on the lifespan and health of the elderly can potentially be minimized by interventions aimed at returning these cellular processes to normal functioning. The ongoing search for ways to rejuvenate and improve the regenerative capacity of cells led to the discovery of partial reprogramming in 2016. Partial reprogramming is based on the short-term expression of reprogramming factors (Oct4, Sox2, Klf4 and c-Myc). As a result, the young epigenetic signature of aging cells is restored. The efficacy of the method has been shown in both in vitro and in vivo systems. In this review we discuss the main successes of partial reprogramming, as well as the problems and unresolved issues faced by the researchers. Separately, we focus on the data on molecular changes during partial reprogramming. The method of partial reprogramming provides a wide range of opportunities for fundamental research of aging and rejuvenation. Further work in this direction can lead to the development of therapeutic strategies to alleviate age-related diseases and thus improve health and longevity.

About the authors

M. A. Shorokhova

Institute of Cytology, Russian Academy of Sciences

Author for correspondence.
Email: shili-mariya@yandex.ru
Russia, 194064, St. Petersburg

References

  1. Abad M., Mosteiro L., Pantoja C., Cañamero M., Rayon T., Ors I., Graña O., Megías D., Domínguez O., Martínez D., Manzanares M., Ortega S., Serrano M. 2013. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. V. 502. P. 340. https://doi.org/10.1038/nature12586
  2. Alle Q., Le Borgne E., Bensadoun P., Lemey C., Béchir N., Gabanou M., Estermann F., Bertrand-Gaday C., Pessemesse L., Toupet K., Vialaret J., Hirtz C., Noël D., Jorgensen C., Casas F., Milhavet O., Lemaitre J.-M. 2021. A single short reprogramming early in life improves fitness and increases lifespan in old age. BioRxiv. V. 21. P. e13714. https://doi.org/10.1111/acel.13714
  3. Bell C.G., Lowe R., Adams P.D., Baccarelli A.A., Beck S., Bell J.T., Christensen B.C., Gladyshev V.N., Heijmans B.T., Horvath S., Ideker T., Issa J.P.J., Kelsey K.T., Marioni R.E., Reik W. et al. 2019. DNA methylation aging clocks: challenóges and recommendations. Genome Biol. V. 20. P. 249. https://doi.org/10.1186/s13059-019-1824-y
  4. Blagosklonny M.V. 2013. TOR-centric view on insulin resistance and diabetic complications: Perspective for endocrinologists and gerontologists. Cell Death Disease. V. 4: e964. https://doi.org/10.1038/cddis.2013.506
  5. Bocklandt S., Lin W., Sehl M.E., Sánchez F.J., Sinsheimer J.S., Horvath S., Vilain E. 2011. Epigenetic predictor of age. PLoS One V. 6: e14821. https://doi.org/10.1371/journal.pone.0014821
  6. Brandhorst S., Choi I.Y., Wei M., Cheng C.W., Sedrakyan S., Navarrete G., Dubeau L., Yap L.P., Park R., Vinciguerra M., Di Biase S., Mirzaei H., Mirisola M.G., Childress P., Ji L., Groshen S. et al. 2015. A Periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. V. 22. P. 86.
  7. Brett J.O., Rando T.A. 2014. Alive and well? Exploring disease by studying lifespan. Curr. Opin. Genet. Dev. V. 26. P. 33.
  8. Chen Y., Lüttmann F.F., Schoger E., Schöler H.R., Zelarayán L.C., Kim K.P., Haigh J.J., Kim J., Braun T. 2021. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science. V. 373. P. 80.
  9. Childs B.G., Durik M., Baker D.J., Van Deursen J.M. 2015. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature Medicine. V. 21. P. 1424.
  10. Chondronasiou D., Gill D., Mosteiro L., Urdinguio R.G., Berenguer-Llergo A., Aguilera M., Durand S., Aprahamian F., Nirmalathasan N., Abad M., Martin-Herranz D.E., Stephan-Otto Attolini C., Prats N. et al. 2022. Multi-omic rejuvenation of naturally aged tissues by a single cycle of transient reprogramming. Aging Cell V. 21: e13578. https://doi.org/10.1111/acel.13578
  11. Conboy I.M., Conboy M.J., Wagers A.J., Girma E.R., Weismann I.L., Rando T.A. 2005. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature V. 433. P. 760.
  12. Cuervo A.M., Bergamini E., Brunk U.T., Dröge W., Ffrench M., Terman A. 2005. Autophagy and aging: the importance of maintaining “clean” cells. Autophagy. V. 1. P. 131. https://doi.org/10.4161/auto.1.3.2017
  13. Dungan C.M., Figueiredo V.C., Wen Y., VonLehmden G.L., Zdunek C.J., Thomas N.T., Mobley C.B., Murach K.A., Brightwell C.R., Long D.E., Fry C.S., Kern P.A., McCarthy J.J., Peterson C.A. 2022. Senolytic treatment rescues blunted muscle hypertrophy in old mice. GeroScience V. 44. P. 1925. https://doi.org/10.1007/s11357-022-00542-2
  14. Galkin F., Mamoshina P., Aliper A., de Magalhães J.P., Gladyshev V.N., Zhavoronkov A. 2020. Biohorology and biomarkers of aging: current state-of-the-art, challenges and opportunities. ARR. V. 60: e 60:101050. https://doi.org/10.1016/j.arr.2020.101050
  15. Gems D., Partridge L. 2013. Genetics of longevity in model organisms: debates and paradigm shifts. Annu. Rev. Physiol. V. 75. P. 621.
  16. Gill D., Parry A., Santos F., Okkenhaug H., Todd C.D., Hernando-Herraez I., Stubbs T.M., Milagre I., Reik W. 2022. Multi-omic rejuvenation of human cells by maturation phase transient reprogramming. Elife V. 11: e71624. https://doi.org/10.7554/eLife.71624
  17. Gladyshev V.N., Kritchevsky S.B., Clarke S.G., Cuervo A.M., Fiehn O., de Magalhães J.P., Mau T., Maes M., Moritz R.L., Niedernhofer L.J., Van Schaftingen E., Tranah G.J., Walsh K., Yura Y., Zhang B., Cummings S.R. 2021. Molecular damage in aging. Nature Aging. V.1: 1096. https://doi.org/10.1038/s43587-021-00150-3
  18. Guan J., Wang G., Wang J., Zhang Z., Fu Y., Cheng L., Meng G., Lyu Y., Zhu J., Li Y., Wang Y., Liuyang S., Liu B., Yang Z., He H., Zhong X., Chen Q. et al. 2022. Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature. V. 605. P. 325.
  19. Guderyon M.J., Chen C., Bhattacharjee A., Ge G., Fernandez R.A., Gelfond J.A.L., Gorena K.M., Cheng C.J., Li Y., Nelson J.F., Strong R.J., Hornsby P.J., Clark R.A., Li S. 2020. Mobilization-based transplantation of young-donor hematopoietic stem cells extends lifespan in mice. Aging Cell. V. 19: e13110. https://doi.org/10.1111/acel.13110
  20. Haigis M.C., Yankner B.A. 2010. The aging stress response. Mol. Cell. V. 40. P. 333.
  21. Hishida T., Yamamoto M., Hishida-Nozaki Y., Shao C., Huang L., Wang C., Shojima K., Xue Y., Hang Y., Shokhirev M., Memczak S., Sahu S.K., Hatanaka F., Ros R.R., Maxwell M. et al. 2022. In vivo partial cellular reprogramming enhances liver plasticity and regeneration. Cell Rep. V. 39: 110730. https://doi.org/10.1016/j.celrep.2022.110730
  22. Hofmann J.W., Zhao X., De Cecco M., Peterson A.L., Pagliaroli L., Manivannan J., Hubbard G.B., Ikeno Y., Zhang Y., Feng B., Li X., Serre T., Qi W., Van Remmen H., Miller R.A., Bath K.G. et al. 2015. Reduced expression of MYC increases longevity and enhances healthspan. Cell. V. 160. P. 477.
  23. Horvath S. 2013. DNA methylation age of human tissues and cell types. Genome Biol. V. 14. P. R115.
  24. Hou P., Li Y., Zhang X., Liu C., Guan J., Li H., Zhao T., Ye J., Yang W., Liu K., Ge J., Xu J., Zhang Q., Zhao Y., Deng H. 2013. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. V. 341. P. 651.
  25. Hu K. 2014. All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem Cells Dev. V. 23. P. 1285.
  26. Kim Y., Jeong J., Choi D. 2020. Small-molecule-mediated reprogramming: a silver lining for regenerative medicine. Exp. Mol. Med. V. 52. P. 213.
  27. Klawitter S., Fuchs N.V., Upton K.R., Muñoz-Lopez M., Shukla R., Wang J., Garcia-Cañadas M., Lopez-Ruiz C., Gerhardt D.J., Sebe A., Grabundzija I., Merkert S., Gerdes P., Pulgarin J.A., Bock A., et al. 2016. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nat. Commun. V. 7: 10286. https://doi.org/10.1038/ncomms10286
  28. Koch C.M., Reck K., Shao K., Lin Q., Joussen S., Ziegler P., Walenda G., Drescher W., Opalka B., May T., Brummendorf T., Zenke M., Saric T., Wagner W. 2013. Pluripotent stem cells escape from senescenceassociated DNA methylation changes. Genome Res. V. 23. P. 248.
  29. Koch C.M., Wagner W. 2011. Epigenetic-aging-signature to determine age in different tissues. Aging (Albany. NY). V. 3. P. 1018.
  30. Lapasset L., Milhavet O., Prieur A., Besnard E., Babled A., Ät-Hamou N., Leschik J., Pellestor F., Ramirez J.M., De Vos J., Lehmann S., Lemaitre J.M. 2011. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. V. 25. P. 2248. https://doi.org/10.1101/gad.173922.111
  31. Lee C., Raffaghello L., Brandhorst S., Safdie F.M., Bianchi G., Martin-Montalvo A., Pistoia V., Wei M., Hwang S., Merlino A., Emionite L., De Cabo R., Longo V.D. 2012. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl. Med. V. 4: 124ra27. https://doi.org/10.1126/scitranslmed.3003293
  32. Lee C., Safdie F.M., Raffaghello L., Wei M., Madia F., Parrella E., Hwang D., Cohen P., Bianchi G., Longo V.D. 2010. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. V. 70. P. 1564.
  33. Lewis-McDougall F.C., Ruchaya P.J., Domenjo-Vila E., Shin Teoh T., Prata L., Cottle B.J., Clark J.E., Punjabi P.P., Awad W., Torella D., Tchkonia T., Kirkland J.L., Ellison-Hughes G.M. 2019. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell. V. 18: e12931. https://doi.org/10.1111/acel.12931
  34. Lin Q., Weidner C.I., Costa I.G., Marioni R.E., Ferreira M.R.P., Deary I.J., Wagner W. 2016. DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. Aging (Albany. NY). V. 8. P. 394.
  35. Liu X., Ouyang J.F., Rossello F.J., Tan J.P., Davidson K.C., Valdes D.S., Schröder J., Sun Y.B.Y., Chen J., Knaupp A.S., Sun G., Chy H.S., Huang Z., Pflueger J., Firas J. et al. 2020. Reprogramming roadmap reveals route to human induced trophoblast stem cells. Nature. V. 586. P. 101.
  36. Longo V.D., Finch C.E. 2003. Evolutionary medicine: from dwarf model systems to healthy centenarians? Science. V. 299. P. 1342.
  37. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. 2013. The hallmarks of aging. Cell. V. 153. P. 1194.
  38. Lu A.T., Quach A., Wilson J.G., Reiner A.P., Aviv A., Raj K., Hou L., Baccarelli A.A., Li Y., Stewart J.D., Whitsel E.A., Assimes T.L., Ferrucci L., Horvath S. 2019. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany. NY). V. 11. P. 303.
  39. Lu Y., Brommer B., Tian X., Krishnan A., Meer M., Wang C., Vera D.L., Zeng Q., Yu D., Bonkowski M.S., Yang J.H., Zhou S., Hoffmann E.M., Karg M.M., Schultz M.B., Kane A.E., Davidsohn N. et al. 2020. Reprogramming to recover youthful epigenetic information and restore vision. Nature. V. 588. P. 124.
  40. Ludwig F.C., Elashoff R.M. 1972. Mortality in syngeneic rat parabionts of different chronological age. Trans. N.Y. Acad. Sci. V. 34. P. 582.
  41. Madeo F., Tavernarakis N., Kroemer G. 2010. Can autophagy promote longevity? Nat. Cell Biol. V. 12. P. 842.
  42. Mair W., Dillin A. 2008. Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. V. 77. P. 727.
  43. Manukyan M., Singh P.B. 2014. Epigenome rejuvenation: HP1β mobility as a measure of pluripotent and senescent chromatin ground states. Sci. Rep. V. 4. P. 4789.
  44. Marioni R.E., Shah S., McRae A.F., Chen B.H., Colicino E., Harris S.E., Gibson J., Henders A.K., Redmond P., Cox S.R., Pattie A., Corley J., Murphy L., Martin N.G., Montgomery G.W. et al. 2015. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. V. 16. P. 25.
  45. Mertens J., Paquola A.C.M., Ku M., Hatch E., Böhnke L., Ladjevardi S., McGrath S., Campbell B., Lee H., Herdy J.R., Gonçalves J.T., Toda T., Kim Y., Winkler J., Yao J. et al. 2015. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell. V. 17. P. 705.
  46. Miller J.D., Ganat Y.M., Kishinevsky S., Bowman R.L., Liu B., Tu E.Y., Mandal P.K., Vera E., Shim J.W., Kriks S., Taldone T., Fusaki N., Tomishima M.J., Krainc D., Milner T.A. et al. 2013. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell V. 13. P. 691.
  47. Narasimhan S.D., Yen K., Tissenbaum H.A. 2009. Converging pathways in lifespan regulation. Curr. Biol. V. 19: R657. https://doi.org/10.1016/j.cub.2009.06.013
  48. Nishimura T., Kaneko S., Kawana-Tachikawa A., Tajima Y., Goto H., Zhu D., Nakayama-Hosoya K., Iriguchi S., Uemura Y., Shimizu T., Takayama N., Yamada D., Nishimura K., Ohtaka M. et al. 2013. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell. V. 12. P. 114.
  49. Ocampo A., Reddy P., Martinez-Redondo P., Platero-Luengo A., Hatanaka F., Hishida T., Li M., Lam D., Kurita M., Beyret E., Araoka T., Vazquez-Ferrer E., Donoso D., Roman J. L. et al. C. 2016. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell. V. 167. P. 1719.
  50. Ohnishi K., Semi K., Yamamoto T., Shimizu M., Tanaka A., Mitsunaga K., Okita K., Osafune K., Arioka Y., Maeda T., Soejima H., Moriwaki H., Yamanaka S., Woltjen K., Yamada Y. 2014. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell. V. 156. P.663.
  51. Ohnuki M., Tanabe K., Sutou K., Teramoto I., Sawamura Y., Narita M., Nakamura M., Tokunaga Y., Nakamura M., Watanabe A., Yamanaka S., Takahashi K. 2014. Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential. Proc. Natl. Acad. Sci. USA. V. 111. P. 12426.
  52. Olova N., Simpson D.J., Marioni R.E., Chandra T. 2019. Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity. Aging Cell. V. 18: e12877. https://doi.org/10.1111/acel.12877
  53. Raffaghello L., Lee C., Safdie F.M., Wei M., Madia F., Bianchi G., Longo V.D. 2008. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc. Natl. Acad. Sci. USA. V. 105. P. 8215.
  54. Rodríguez-Matellán A., Alcazar N., Hernández F., Serrano M., Ávila J. 2020. In vivo reprogramming ameliorates aging features in dentate gyrus cells and improves memory in mice. Stem Cell Reports V. 15. P. 1056.
  55. Roux A.E., Zhang C., Paw J., Zavala-Solorio J., Malahias E., Vijay T., Kolumam G., Kenyon C., Kimmel J.C. 2022. Diverse partial reprogramming strategies restore youthful gene expression and transiently suppress cell identity. Cell Syst. V. 13. P. 574.
  56. Sarkar T.J., Quarta M., Mukherjee S., Colville A., Paine P., Doan L., Tran C.M., Chu C.R., Horvath S., Qi L.S., Bhutani N., Rando T.A., Sebastiano V. 2020. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat. Commun. V. 11. P. 1545.
  57. Schiebinger G., Shu J., Tabaka M., Cleary B., Subramanian V., Solomon A., Gould J., Liu S., Lin S., Berube P., Lee L., Chen J., Brumbaugh J., Rigollet P., Hochedlinger K. et al. 2019. Optimal-Transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell. V. 176. P. 928.
  58. Schmauck-Medina T., Molière A., Lautrup S., Zhang J., Chlopicki S., Madsen H.B., Cao S., Soendenbroe C., Mansell E., Vestergaard M.B., Li Z., Shiloh Y., Opresko P.L., Egly J.M., Kirkwood T. et al. 2022. New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging (Albany. NY). V. 14: 6829. https://doi.org/10.18632/aging.204248
  59. Shahini A., Rajabian N., Choudhury D., Shahini S., Vydiam K., Nguyen T., Kulczyk J., Santarelli T., Ikhapoh I., Zhang Y., Wang J., Liu S., Stablewski A., Thiyagarajan R., Seldeen K. et al. 2021. Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic progenitors in vitro and in vivo. Sci. Adv. V. 7: eabe5671. https://doi.org/10.1126/sciadv.abe5671
  60. Singh P.B., Laktionov P.P., Newman A.G. 2019. Deconstructing age reprogramming. J. Biosci. V. 44. P. 106.
  61. Smith E.D., Kaeberlein T.L., Lydum B.T., Sager J., Welton K.L., Kennedy B.K., Kaeberlein M. 2008. Age- and calorie-independent life span extension from dietary restriction by bacterial deprivation in Caenorhabditis elegans. BMC Dev. Biol. V. 8. P. 49.
  62. Stölzel F., Brosch M., Horvath S., Kramer M., Thiede C., Von Bonin M., Ammerpohl O., Middeke M., Schetelig J., Ehninger G., Hampe J., Bornhäuser M. 2017. Dynamics of epigenetic age following hematopoietic stem cell transplantation. Haematologica. V. 102: e321. https://doi.org/10.3324/haematol.2016.160481
  63. Takahashi K., Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. V. 126. P. 663.
  64. Tanabe K., Nakamura M., Narita M., Takahashi K., Yamanaka S. 2013. Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts. Proc. Natl. Acad. Sci. USA. V. 110. P. 12172.
  65. Verweij M., Van Ginhoven T.M., Mitchell J.R., Sluiter W., Den Engel S. Van, Roest H.P., Torabi E., Ijzermans J.N.M., Hoeijmakers J.H.J., De Bruin R.W.F. 2011. Preoperative fasting protects mice against hepatic ischemia/reperfusion injury: mechanisms and effects on liver regeneration. Liver Transplant. V. 17. P. 695.
  66. Vizioli M.G., Liu T., Miller K.N., Robertson N.A., Gilroy K., Lagnado A.B., Perez-Garcia A., Kiourtis C., Dasgupta N., Lei X., Kruger P.J., Nixon C., Clark W., Jurk D., Bird T.G. et al. 2020. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev. V. 34. P. 428.
  67. Weidner C.I., Lin Q., Koch C.M., Eisele L., Beier F., Ziegler P., Bauerschlag D.O., Jöckel K.H., Erbel R., Mühleisen T.W., Zenke M., Brümmendorf T.H., Wagner W. 2014. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. V. 15. P. R24.
  68. Ye J., Ge J., Zhang X., Cheng L., Zhang Z., He S., Wang Y., Lin H., Yang W., Liu J., Zhao Y., Deng H. 2016. Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Res. V. 26. P. 34.
  69. Yousefzadeh M.J., Flores R. R., Zhu Y., Schmiechen Z.C., Brooks R.W., Trussoni C.E., Cui Y., Angelini L., Lee K.A., McGowan S.J., Burrack A.L., Wang D., Dong Q., Lu A., Sano T., O’Kelly R.D. et al. 2021. An aged immune system drives senescence and ageing of solid organs. Nature. V. 594. P. s41586.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (688KB)
3.

Download (263KB)
4.

Download (449KB)

Copyright (c) 2023 М.А. Шорохова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies