The Effect of Synthetic Polycation Poly-2-Dimethylaminoethylmethacrylate on Biological Activity of Mammalian Resident and Nonresident Cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cationic polymers are the positively charged macromolecules that have in their structure N-containing functional groups such as primary, secondary and tertiary amine groups; quaternary ammonium groups and others. The effect of synthetic polycation poly-2-dimethylaminoethylmethacrylate (PDMAEM) on biological activity of animal fibroblasts (CHL V-79 RJK) and human red blood cells (RBCs) was studied. The influence of PDMAEM on cell adhesion using fibroblast culture was analyzed. Cultural plastic treated or untreated by polycation was used as substrate. The polycation adsorption on polystyrene surface did not change the adhesive capacity of fibroblasts. Pretreatment of fibroblasts with PDMAEM did not influence at low concentrations (0.1 and 1 μg/mL) the adhesive properties of cells plated on the untreated plastic surface. At high concentrations (10 and 100 μg/mL) PDMAEM inhibited the attachment of fibroblasts to this substrate. Relationship between the inhibition of cell adhesion under PDMAEM action and the toxic effect on fibroblast viability has been found. The PDMAEM treatment of human RBCs at high doses led to the damage of cells and release of hemoglobin to incubation medium. At low doses PDMAEM practically did not influence the hemolysis of RBCs. It was shown that PDMAEM induced the change of the shape and aggregation of RBCs. The toxic effect of PDMAEM on human RBCs coincided as a whole with such effect for animal fibroblasts. Possible cell targets upon the PDMAEM effect are discussed.

About the authors

V. P. Ivanova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Author for correspondence.
Email: valet@iephb.ru
Russia, 194223, St. Petersburg

L. L. Alekseenko

Insitute of Cytology, Russian Academy of Sciences

Email: valet@iephb.ru
Russia, 194064, St. Petersburg

O. V. Nazarova

Institute of Macromolecular Compounds, Russian Academy of Sciences

Email: valet@iephb.ru
Russia, 199004, St. Petersburg

I. V. Mindukshev

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: valet@iephb.ru
Russia, 194223, St. Petersburg

References

  1. Боровская М.К., Кузнецова Э.Э., Горохова В.Г., Корякина Л.Б., Курильская Т.Е., Пивоваров Ю.И. 2010. Структурно-функциональная характеристика мембраны эритроцита и ее изменения при патологиях разного генеза. Бюл. ВСНЦ СО РАМН. № 3. С. 334. (Borovskaya M.K., Kuznetsova E.E., Gorokhova V.G., Koriakina L.B., Kurilskaya T.E., Pivovarov Ju.I. 2010. Structural and functional characteristics of membrane’s erythrocyte and its change at pathologies of various genesis. Byulleten’ Vostochno-Sibirskogo Nauchnogo Tsentra Sibirskogo Otdeleniya Rossiiskoi Akademii Meditsinskikh Nauk. № 3. P. 334.)
  2. Боронихина Т.В., Ломановская Т.А., Яцковский А.Н. 2021. Плазмолемма эритроцитов и ее изменения в течение жизни клеток. Журн. анатомии и гистопатологии. Т. 10. № 2. С. 62. (Boronikhina T.V., Lamanovskaya T.A., Yatskovskii A.N. 2021. Erythrocyte plasmalemma and its changes during the cell lifespan. Zhurnal Anatomii i Gistopatologii. V. 10. № 2. P. 62.)
  3. Иванова В.П. 2023. О вариативности клеточного адгезивного ответа под воздействием родственных коротких пептидов. Цитология. Т. 65. № 1. С. 92. (Ivanova V.P. 2023. On the variativity of cellular adhesive response under the influence of related short peptides. Cell Tissue Biol. (Tsitologiya). V. 17. № 3. P. 265.)
  4. Иванова В.П., Гринчук Т.М., Алексеенко Л.Л., Арцыбашева И.В., Гаврилова И.И. 2010. Влияние синтетического поликатиона полиаллиламина на адгезию и жизнеспособность фибробластов китайского хомячка CHL V-79 RJK с разной степенью устойчивости к нагреву. Цитология. Т. 52. № 9. С. 729. (Ivanova V.P., Grinchuk T.M., Alekseenko L.L., Artsybasheva I.V., Gavrilova I.I. 2010. Effect of synthetic polycation polyallylamine on adhesion and viability of CHL V-79 RJK Chinese hamster fibroblasts with various heat resistance. Cell Tiss. Biol. V. 4. P. 520.)
  5. Иванова В.П., Ковалева З.В., Анохина В.В., Кривченко А.И. 2012. Влияние трипептидного фрагмента коллагена (GER) на адгезию и распластывание фибробластов зависит от свойств адгезивной поверхности. Цитология. Т. 54. № 11. С. 823. (Ivanova V.P., Kovaleva Z.V., Anokhina V.V., Krivchenko A.I. 2013. The effect of a collagen tripeptide fragment (GER) on fibroblast adhesion and spreading depends on properties of an adhesive surface. Cell Tiss. Biol. V. 7. P. 21.)
  6. Крепс Е.М. 1981. Липиды клеточных мембран. Эволюция липидов мозга. Адаптационная функция липидов. Л.: Наука. 339 с. (Kreps E.M. 1981. Lipidy kletochnykh membran. Evolyutsiya lipidov mozga. Adaptatsionnaya funktsiya lipidov (Cell membrane lipids. Evolution of brain lipids. Adaptive functions of lipids). Leningrad: Nauka. 339 pp.)
  7. Мороз В.В., Голубев А.М., Афанасьев А.В., Кузовлев А.Н., Сергунова В.А., Гудкова О.Е., Черныш А.М. 2012. Строение и функции эритроцита в норме и при критических состояниях. Общая реаниматология. Т. 8. № 1. С. 52. (Moroz V.V., Golubev A.M., Afanasyev A.V., Kuzovlev A.N., Sergunova V.A., Gudkova O.E., Chernysh A.M. 2012. The structure and function of a red blood cell in health and critical conditions. Obschaya Reanimatologiya. V. 8. № 1. P. 52.)
  8. Спичкина О.Г., Пинаев Г.П., Петров Ю.П. 2008. Анализ гетерогенности кератиноцитов человека, взаимодействующих с иммобилизованными фибронектином, коллагеном I и IV типов. Цитология. Т. 50. № 1. С. 210. (Spichkina O.G., Pinaev G.P., Petrov Y.P. 2008. Analysis of heterogeneity of human keratinocytes interacting with immobilized fibronectin and collagenes of types I and IV. Cell Tiss. Biol. V. 2. P. 123.)
  9. Трошкина Н.А., Циркин В.И., Дворянский С.А. 2007. Эритроцит: строение и функции его мембраны. Вятский мед. вестник. № 2-3. С. 32. (Troshkina N.A., Tsirkin V.I., Dvoryansky S.A. 2007. Erythrocyte: structure and functions of its membrane. Vyatskii Meditsinskii Vestnik. V. 18. № 2-3. P. 32.)
  10. Щербак И.Г. 2005. Биологическая химия. СПб: Изд-во СПбГМУ. 480 с. (Scherbak I.G. 2005. Biological chemistry. St.Petersburg: SPbSMU. 480 p.)
  11. Bačáková L., Filová E., Rypáček F., Śvorčik V., Starý V. 2004. Cell adhesion on artificial materials for tissue engineering. Physiol. Rev. V. 53. P. 35.
  12. Boura C., Muller S., Vautier D., Dumas D., Schaal P., Voegel J.C., Stoltz J.F., Menu P. 2005. Endothelial cell-interactions with polyelectrolyte multilayer films. Biomaterials. V. 26. P. 4568.
  13. Cerda-Cristerna B.I., Flores H., Pozos-Guillén A., Pérez E., Sevrin C., Grandfils C. 2011. Hemocompatibility assessment of poly(2-dimethylamino ethylmethacrylate) (PDMAEMA)-based polymers. J. Control. Release. V. 153. P. 269.
  14. Fischer D., Li Y., Ahlemeyer B., Krieglstein J., Kissel T. 2003. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. V. 24. P. 1121.
  15. Flebus L., Lombart F., Sevrin C., Defraigne J.O., Peters P., Parhamifar L., Molin D.G.M., Grandfils C. 2015. Low molecular weight (2-dimethylamino ethylmethacrylate) polymers with controlled positioned fluorescent labeling: Synthesis, characterization and in vitro interaction with human endothelial cells. Int. J. Pharmaceut. V. 478. P. 278.
  16. Franzin C.M., Macdonald P.M. 2001. Polylysine-induced 2H NMR-observable domains in phosphatidylserine/phosphatidylcholine lipid bilayers. Biophys. J. V. 81. P. 3346.
  17. Gao S., Holkar A., Srivastava S. 2019. Protein-polyelectrolyte complexes and micellar assemblies. Polymers. V. 11. 1097. https://doi.org/10.3390/polym11071097
  18. Gribova V., Auzely-Velty R., Picart C. 2012. Polyelectrolyte multilayer assemblies on materials surfaces: From cell adhesion to tissue engineering. Chem. Mater. V. 24. P. 854.
  19. Humphries I.D., Byron A., Humphries M.J. 2006. Integrin ligands at a glance. J. Cell Sci. V. 119. P. 3901.
  20. Iwamoto D.V., Calderwood D.A. 2015. Regulation of integrin-mediated adhesion. Cur. Opin. Cell Biol. V. 36. P. 41.
  21. Jacobson F., Baraniskin A., Mertens J., Mittler D., Mohammadi-Tabrisi A., Schubert S., Soltau M., Lehnhardt M., Behnke B., Gatermann S., Steinau H.U., Steinstraesser L. 2005. Activity of histone H1.2 in infected burn wounds. J. Antimicrob. Chemother. V. 55. P. 735.
  22. Keely S., Rullay A., Wilson C., Carmichael A., Carrington S., Corfield A., Haddleton D.M., Brayden D.J. 2005. In vitro and ex vivo intestinal tissue models to measure mucoadhesion of poly(methacrylate) and N-trimethylated chitosan polymers. Pharmac. Res. V. 22. P. 38.
  23. Keely S., Ryan S., Haddleton D.M., Limer A., Murphy E.P., Colgan S.P., Brayden D.J. 2009. Dexamethasone-poly(dimethylamino)ethyl methacrylate (pDMAEMA) conjugates reduce inflammatory biomaterials in human intestinal epithelial monolayers. J. Control. Release. V. 135. P. 35.
  24. Layman J.M., Ramirez S.M., Green M.D., Long T.E. 2009. Influence of polycation molecular weight on poly(2-dimethylaminoethyl methacrylate)-mediated DNA delivery in vitro. Biomacromol. V. 10. P. 1244.
  25. Lelong I.H., Petegnief V., Rebel G. 1992. Neuronal cells mature faster on polyethyleneimine coated plates than on polylysine coated plates. J. Neurosci. Res. V. 32. P. 562.
  26. Lutolf M.P., Hubbell J.A. 2003. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis and tissue engineering. Nature Biotechnol. V. 23. P. 47.
  27. Lv H., Zhang S., Wang B., Cui S., Yan J. 2006. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release. V. 114. P. 100.
  28. Madaan K., Kumar S., Poonia N., Lather V., Pandita D. 2014. Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J. Pharmacy Bioall. Sci. V. 6. P. 139.
  29. Molotkovsky R.J., Galimzyanov T.R., Ermakov Y.A. 2021. Heterogeneity in lateral distribution of polycations at the surface of lipid membranes: from the experimental data to the theoretical model. Materials. V. 14. 6623.
  30. https://doi.org/10.3390/ma14216623
  31. Monnery B.D., Wright M., Cavill R., Hoogenboom R., Shaunak S., Steinke J.H.G., Thanou M. 2017. Cytotoxicity of polycations: relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity. Int. J. Pharm. V. 521. P. 249.
  32. Moreau E., Domurado M., Chapon P., Vert M., Domurado D. 2002. Biocompatibility of polycations: in vitro agglutination and lysis of red blood cells and in vivo toxicity. J. Drug Target. V. 10. P. 161.
  33. Moreau E., Ferrari I., Drochon A., Chapon P., Vert M., Domurado D. 2000. Interactions between red blood cells and a lethal, partly quarternized tertiary polyamine. J. Control. Release. V. 64. P. 115.
  34. Niks M., Otto M. 1990. Towards an optimized MTT assay. J. Immunol. Meth. V. 130. P. 149.
  35. Oku N., Yamaguchi Na, Yamaguchi No, Shibamoto S., Tto F., Nango M. 1986. The fusogenic effect of synthetic polymers on negatively charged lipid bilayers. J. Biochem. V. 100. P. 935.
  36. Phillips D.J., Harrison J., Richards S.J., Mitchell D.E., Tichauer E., Hubbard A.T.M., Guy C., Portman I.H., Fullam E. 2017. Evaluation of the antimicrobial activity of cationic polymers against Mycobacteria: toward antitubercular macromolecules. Biomacromol. V. 18. P. 1592.
  37. Putnam D., Gentry C.A., Pack D.W., Langer R. 2001. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc. Natl. Acad. Sci. USA. V. 98. P. 1200.
  38. Ravichandran R., Sundarrajan S., Venugopal J.R., Mukherjee S., Ramakrishna S. 2012. Advances in polymeric systems for tissue engineering and biochemical applications. Macromol. Biosci. V. 12. P. 286.
  39. Rawlinson L.A., Ryan S.M., Mantovani G., Syrett J.A., Haddleton D.M., Brayden D.J. 2010. Antibacterial effects of poly(2-dimethylamino ethyl) methacrylate against selected gram-positive and gram-negative bacteria. Biomacromol. V. 11. P. 443.
  40. Reuter M., Schwieger C., Meister A., Karlsson G., Blume A. 2009. Poly-L-lysines and poly-L-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane. Biophys. Chem. V. 144. P. 27.
  41. Rihová B., Kovár L., Kovár M., Hovorka O. 2009. Cytotoxicity and immunostimulation: double attack on cancer cells with polymeric therapeutics. Trends Biotechnol. V. 27. P. 11.
  42. Rosa M.D., Carteni M., Petillo O., Calarco A., Margarucci S., Rosso F., Rosa A.D., Farina E., Grippo P., Peluso G. 2004. Cationic polyelectrolyte hydrogel fosters fibroblast spreading, proliferation and extracellular matrix production: Implication for tissue engineering. J. Cell Physiol. V. 198. P. 133.
  43. Samal S.K., Dash M., Vlierberghe van S., Kaplan D.L., Chellini E., Blitterswijk van C., Moroni L., Dubruel P. 2012. Cationic polymers and their therapeutic potential. Chem. Soc. Rev. V. 41. P. 7147.
  44. Santiago L.Y., Nowak R.W., Rubin J.P., Marra K.G. 2006. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell application. J. Biomaterials. V. 27. P. 2962.
  45. Schwieger C., Blume A. 2009. Interaction of poly-L-arginine with negatively charged DPPG membranes: calorimetric and monolayer studies. Biomacromol. V. 10. P. 2152.
  46. Soravia V., Toca-Herrera J.L. 2009. Substrate influence on cell shape and cell mechanics: Hep G2 cells spread on positively charged surfaces. Microsc. Res. Tech. V. 72. P. 957.
  47. Stawski D., Rolińska K., Zielińska D., Sahariah P., Hjalmarsdóttir M.A., Másson M. 2022. Antibacterial properties of poly (NN-dimethylaminoethyl methacrylate) obtained at different initiator concentrations in solution polymerization. R. Soc. Open Sci. V. 9. 211367.
  48. https://doi.org/10.6084/m9.figshare.c5764223
  49. Tanasienko I.V., Yemets A.I., Finiuk N.S., Stoiko R.P., Blume Y.B. 2015. DMAEM-based cationic polymers as novel carriers for DNA delivery into cells. Cell Biol. Int. V. 39. P. 243.
  50. Thompson M.T., Berg M.C., Tobias I.S., Lichter J.A., Rubner M.F., Vliet van K.J. 2006. Biochemical functionalization of polymeric cell substrata can alter mechanical compliance. Biomacromol. V. 7. P. 1990.
  51. Tsai W.B., Chen R.P.Y., Wei K.L., Chen Y.R., Liao T.Y., Liu H.L., Lai J.Y. 2009. Polyelectrolyte multilayer films functionalized with peptides for promoting osteoblast functions. Acta Biomaterialia. V. 5. P. 3467.
  52. Vancha A.R., Govindaraju S., Parsa K.V.L., Jasti M., Gonzalez-Garcia M., Ballestero R.P. 2004. Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer. BMC Biotechnology. V. 4. 23.
  53. https://doi.org/10.1186/1472-6750-4-23
  54. VanderVondele S., Vörös J., Hubbell J.A. 2003. RGD-grafted poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol. Bioeng. V. 82. P. 784.
  55. Xie B., Du K., Huang F., Lin Z., Wu L. 2022. Cationic nanomaterials for autoimmune diseases therapy. Front. Pharmacol. V. 12. 762362.https://doi.org/10.3389/fphar.2021.762362
  56. You Y.Z., Manickam D.S., Zhou Q.H., Oupicky D. 2007. Reducible poly (2-dimethylaminoethyl methacrylate): synthesis, cytotoxicity, and gene delivery activity. J. Control. Release. V. 122. P. 217.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (31KB)
3.

Download (33KB)
4.

Download (29KB)
5.

Download (2MB)
6.

Download (2MB)

Copyright (c) 2023 В.П. Иванова, Л.Л. Алексеенко, О.В. Назарова, И.В. Миндукшев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies