Phagocytosis of Protein-Modified Polymer Microparticles by Immune Cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The ability of three model green proteins to covalently bind to microparticles (MP) based on poly(D,L-lactic acid) (PLA). Green fluorescent protein (sfGFP), recombinant human beta2-microglobulin-sfGFP fusion protein (β2M-sfGFP), and recombinant human amylin-sfGFP fusion protein (IAPP-sfGFP) were isolated by affinity chromatography. The double emulsion method was used to form PLA-MPs. The modification of PLA MPs by proteins was testified using laser scanning microscopy (LSM). Phagocytosis of PLA-MPs modified with different proteins and free model proteins by macrophages was also studied using LSM. Recombinant sfGFP has been shown to bind to particle surfaces at lower levels compared to β2M-sfGFP and IAPP-sfGFP. Presumably, this is due to the fact that amino groups that could potentially react with activated carboxyl groups on particle surfaces, are spatially unavailable for this reaction due to the structure of sfGFP. β2M and IAPP within the corresponding recombinant proteins are spacer structures between the surface of spherical particles and sfGFP. It was also found that increasing the protein/particle ratio by a factor of three did not lead to an increase in the amount of bound protein per unit mass of particles, which may indicate that the amount of protein that can be bound per unit mass of particles is limited by the capacity of the particles themselves. The study of phagocytosis of PLA-MPs modified with model proteins revealed that MPs bearing β2M-sfGFP and IAPP-sfGFP were captured by macrophages and, therefore, contribute to the activation of the cellular immune response, which is important in the fight against various viral infections. In addition, model proteins (β2M-sfGFP, IAPP-sfGFP) appeared to be also capable of phagocytosis. This may be due to the fact that both β2M and IAPP are amyloidogenic and aggregation prone proteins. Apparently, the aggregates of these proteins are also able to be absorbed by macrophages due to the increase in size compared to their monomeric forms.

About the authors

R. G. Sakhabeev

St. Petersburg State Technological Institute (Technical University); Institute of Experimental Medicine

Author for correspondence.
Email: helm505@mail.ru
Russia, 190013, St. Petersburg; Russia, 197022, St.-Petersburg

D. S. Polyakov

Institute of Experimental Medicine

Email: helm505@mail.ru
Russia, 197022, St.-Petersburg

N. A. Grudinina

Institute of Experimental Medicine

Email: helm505@mail.ru
Russia, 197022, St.-Petersburg

O. I. Antimonova

Institute of Experimental Medicine

Email: helm505@mail.ru
Russia, 197022, St.-Petersburg

V. A. Korzhikov-Vlakh

Institute of Chemistry, St.-Petersburg State University

Email: helm505@mail.ru
Russia, 198504, St. Petersburg

E. R. Alikparova

Institute of Chemistry, St.-Petersburg State University

Email: helm505@mail.ru
Russia, 198504, St. Petersburg

E. S. Sinitsyna

Institute of Chemistry, St.-Petersburg State University; Institute of Macromolecular Compounds, Russian Academy of Sciences

Email: helm505@mail.ru
Russia, 198504, St. Petersburg; Russia, 199004, St. Petersburg

M. M. Shavlovsky

Institute of Experimental Medicine

Email: helm505@mail.ru
Russia, 197022, St.-Petersburg

References

  1. Антимонова О.И., Грудинина Н.А., Поляков Д.С., Шавловский М.М. 2016. Белок слияния амилина человека с зеленым флуоресцентным белком “Superfolder.” Естественные и мат. науки в совр. мире. Т. 4. № 39. С. 15. (Antimonova O.I., Grudinina N.A., Polyakov D.S., Shavlovskij M.M. 2016. Belok sliyaniya amilina cheloveka s zelenym fluorescentnym belkom “Superfolder.” Estestvennye i mat. nauki v sovremennom. mire. V. 4. № 39. P. 15.)
  2. Сахабеев Р.Г., Поляков Д.С., Гошина А.Д., Вишня А.А., Кудрявцев И.В., Синицына Е.С., Коржиков-Влах В.А., Тенникова Т.Б., Шавловский М.М. 2021. Усиление специфического Т-клеточного иммунного ответа при иммобилизации антигена на микро- и наночастицах. Инфекция и иммунитет. Т. 11. № 4. С. 777. (Sakhabeev R.G., Polyakov D.S., Goshina A.D., Vishnya A.A., Kudryavtsev I.V., Sinitcina E.S., Korzhikov-Vlakh V.А., Tennikova T.B., Shavlovsky M.M. 2021. Enhancing the specific T cell immune response against micro- and nanoparticle immobilized antigen. Russ. J. Infection Immunity. V. 11. № 4. P. 777.) https://doi.org/10.15789/2220-7619-ETS-1374
  3. Begines B., Ortiz T., Pérez-Aranda M., Martínez G., Merinero M., Argüelles-Arias F., Alcudia A. 2020. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials. V. 10. P. 1403.
  4. Bhattacharya S., Naveena Lavanya Latha J., Kumresan R., Singh S. 2007. Cloning and expression of human islet amyloid polypeptide in cultured cells. Biochem. and Biophys. Res. Commun. V. 356. P. 622.
  5. Chen M., Rosenberg J., Cai X., Lee A.C.H., Shi J., Nguyen M., Wignakumar T., Mirle V., Edobor A.J., Fung J., Donington J.S., Shanmugarajah K., Lin Y., Chang E. et al. 2021. Nanotraps for the containment and clearance of SARS-CoV-2. Matter. V. 4. P. 2059.
  6. Davies J.Q., Gordon S. Isolation and culture of human macrophages. Basic Cell Culture Protocols. V. 290. P. 105.
  7. Fajardo-Moser M., Berzel S., Moll H. 2008. Mechanisms of dendritic cell-based vaccination against infection. Internat. J. Med. Microbiol. V. 298. P. 11.
  8. Gamvrellis A., Leong D., Hanley J.C., Xiang S.D., Mottram P., Plebanski M. 2004. Vaccines that facilitate antigen entry into dendritic cells. Imm. Cell Biol. V. 82. P. 506.
  9. Korzhikov-Vlakh V., Averianov I., Sinitsyna E., Nashchekina Y., Polyakov D., Guryanov I., Lavrentieva A., Raddatz L., Korzhikova-Vlakh E., Scheper T., Tennikova T. 2018. Novel pathway for efficient covalent modification of polyester materials of different design to prepare biomimetic surfaces. Polymers. V. 10. P. 1299.
  10. Lin C.-Y., Lin S.-J., Yang Y.-C., Wang D.-Y., Cheng H.-F., Yeh M.-K. 2015. Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases. Human Vaccines Immunother. V. 11. P. 650.
  11. Pedelacq J.-D., Cabantous S. 2019. Development and applications of superfolder and split fluorescent protein detection systems in biology. Internat. J. Mol. Sci. V. 20. P. 3479.
  12. Peres C., Matos A.I., Conniot J., Sainz V., Zupančič E., Silva J.M., Graca L., Gaspar R.S., Preat V., Florindo H.F. 2017. Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomaterialia. V. 48. P. 41.
  13. Simón-Vázquez R., Peleteiro M., González-Fernández Á. 2020. Polymeric nanostructure vaccines: applications and challenges. Expert Opinion Drug Delivery. V. 17. P. 1007.
  14. Taylor P.C., Adams A.C., Hufford M.M., de la Torre I., Winthrop K., Gottlieb R.L. 2021. Neutralizing monoclonal antibodies for treatment of COVID-19. Nature Rev. Immunol. V. 21. P. 382.
  15. Tyler B., Gullotti D., Mangraviti A., Utsuki T., Brem H. 2016. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Advanced Drug Delivery Rev. V. 107. P. 163.
  16. Vilos C., Velasquez L.A. 2012. Therapeutic strategies based on polymeric microparticles. J. Biomed. Biotech. V. 2012. P. 1.
  17. Vlachopoulos A., Karlioti G., Balla E., Daniilidis V., Kalamas T., Stefanidou M., Bikiaris N.D., Christodoulou E., Koumentakou I., Karavas E., Bikiaris D.N. 2022. Poly(lactic acid)-based microparticles for drug delivery applications: an overview of recent advances. Pharmaceutics. V. 14. P. 359.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)

Copyright (c) 2023 Р.Г. Сахабеев, Д.С. Поляков, Н.А. Грудинина, О.И. Антимонова, В.А. Коржиков-Влах, Э.Р. Аликпарова, Е.С. Синицына, М.М. Шавловский

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies