Локальные структурные особенности и микроскопическая динамика расплава никеля: экспериментальное исследование и молекулярно-динамическое моделирование

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В работе исследуются локальные структурные особенности, микроскопическая динамика и транспортные свойства равновесного и переохлажденного расплава никеля. Комплексное изучение соответствующих физических свойств расплава никеля выполнено с помощью крупномасштабных молекулярно-динамических исследований, экспериментов по дифракции рентгеновских лучей и по вискозиметрии методом крутильных колебаний. Получено хорошее согласие результатов рентгеноструктурного анализа равновесного расплава никеля с результатами моделирования молекулярной динамики при различных ЕАМ-потенциалах и экспериментальными данными по дифракции нейтронов. Установлено, что в жидком никеле вклад парной корреляционной энтропии в избыточную конфигурационную энтропию составляет \(\~\)60% в высокотемпературной области и \(\~\)80% в окрестности и ниже температуры плавления. Обнаружено хорошее согласие результатов моделирования транспортных характеристик (коэффициентов самодиффузии и вязкости) расплава никеля в широкой области температур с имеющимися экспериментальными данными и результатами по вискозиметрии. Показано, что результаты моделирования, полученные со всеми рассмотренными потенциалами межатомного взаимодействия, корректно воспроизводятся модифицированным соотношением Стокса–Эйнштейна, полученным в рамках масштабных преобразований Розенфельда.

About the authors

Р. Хуснутдинов

Казанский (Приволжский) федеральный университет, Институт физики; Удмуртский федеральный исследовательский центр УрО РАН

Author for correspondence.
Email: khrm@mail.ru
Россия, Казань; Россия, Ижевск

Р. Хайруллина

Казанский (Приволжский) федеральный университет, Институт физики

Email: khrm@mail.ru
Россия, Казань

А. Бельтюков

Казанский (Приволжский) федеральный университет, Институт физики; Удмуртский федеральный исследовательский центр УрО РАН

Email: khrm@mail.ru
Россия, Казань; Россия, Ижевск

И. Стерхова

Казанский (Приволжский) федеральный университет, Институт физики; Удмуртский федеральный исследовательский центр УрО РАН

Email: khrm@mail.ru
Россия, Казань; Россия, Ижевск

А. Суслов

Удмуртский федеральный исследовательский центр УрО РАН

Email: khrm@mail.ru
Россия, Ижевск

В. Ладьянов

Удмуртский федеральный исследовательский центр УрО РАН

Email: khrm@mail.ru
Россия, Ижевск

А. Мокшин

Казанский (Приволжский) федеральный университет, Институт физики; Удмуртский федеральный исследовательский центр УрО РАН

Email: khrm@mail.ru
Россия, Казань; Россия, Ижевск

References

  1. Balucani U., Zoppi M. Dynamics of the Liquid State. Oxford: Clarendon Press, 1994. 178 p.
  2. Iida T., Guthrie R.I.L. The Physical Properties of Liquid Metals. Oxford: Oxford Sci. Publ., 1988. 288 p.
  3. Götze W. Complex Dynamics of Glass Forming Liquids. A Mode-coupling Theory. Oxford: Oxford University Press. 2009. 656 p.
  4. Polychroniadou S., Antoniadis K.D., Assael M.J., Bell I.H. A Reference Correlation for the Viscosity of Krypton from Entropy Scaling // Int. J. Thermophys. 2022. V. 43. P. 6.
  5. Хуснутдинов Р.М., Мокшин А.В., Бельтюков А.Л., Олянина Н.В. Вязкость расплава кобальта: эксперимент, моделирование и теория // ТВТ. 2018. Т. 56. № 2. С. 211.
  6. Li N., Wang X.H., Gao N., Chen G.M. Simple Direct Relationship between Scaled Viscosity and a Dimensionless Calorimetric Parameter for Saturated Liquids // Ind. Eng. Chem. Res. 2022. V. 61. P. 1494.
  7. Blodgett M.E., Egami T., Nussinov Z., Kelton K.F. Proposal for Universality in the Viscosity of Metallic Liq-uids // Sci. Rep. 2015. V. 5. P. 13837.
  8. Saliou A., Jarry P., Jakse N. Excess Entropy Scaling Law: A Potential Energy Landscape View // Phys. Rev. E. 2021. V. 104. P. 044128.
  9. Karmkar R.C., Gosh R.C. Validity of the Stokes−Einstein Relation in Liquid 3d Transition Metals for a Wide Range of Temperatures // J. Mol. Liq. 2021. V. 328. P. 115434.
  10. Khrapak S.A., Khrapak A.G. Excess Entropy and Stokes−Einstein Relation in Simple Fluids // Phys. Rev. E. 2021. V. 104. P. 044110.
  11. Khrapak S.A. Diffusion, Viscosity, and Stokes–Einstein Relation in Dense Supercritical Methane // J. Mol. Liq. 2022. V. 354. P. 118840.
  12. Nguyen P.T., Khennache S., Galliero G., Tran T., Tuong L., Nguyen P., Hoang H., Ho H.K. Entropy Scaling for Viscosity of Pure Lennard–Jones Fluids and Their Binary Mixtures // Comm. Phys. 2022. V. 32. P. 187.
  13. Dzugutov M. A Universal Scaling Law for Atomic Diffusion in Condensed Matter // Nature. 1996. V. 381. P. 137.
  14. Rosenfeld Y. A Quasi-universal Scaling Law for Atomic Transport in Simple Fluids // J. Phys.: Condens. Matter. 1999. V. 11. P. 5415.
  15. Bell I.H., Dyre J.C., Ingebrigtsen T.S. Excess-entropy Scaling in Supercooled Binary Mixtures // Nature Commun. 2020. V. 11. P. 4300.
  16. Juhàs P., Davis T., Farrow C.L., Billinge S.J.L. PDFgetX3: a Rapid and Highly Automatable Program for Processing Powder Diffraction Data into Total Scattering Pair Distribution Functions // J. Appl. Crystallorg. 2013. V. 46. P. 560.
  17. Швидковский Е.Г. Некоторые вопросы вязкости расплавленных металлов. М.: Гостехиздат, 1955. 208 с.
  18. Beltyukov A.L., Ladyanov V.I. An Automated Setup for Determining the Kinematic Viscosity of Metal Melts // Instrum. Exp. Tech. 2008. V. 51. P. 304.
  19. Khusnutdinoff R.M., Mokshin A.V., Beltyukov A.L., Olyanina N.V. Viscosity and Structure Configuration Properties of Equilibrium and Supercooled Liquid Cobalt // Phys. Chem. Liq. 2008. V. 56. P. 561.
  20. Khusnutdinoff R.M. Dynamics of Liquid Lithium Atoms: Time Scales and Dynamic Correlation Functions // Acta Phys. Polonica A. 2020. V. 137. P. 267.
  21. Хуснутдинов Р.М., Мокшин А.В., Бельтюков А.Л., Олянина Н.В. Вязкость расплава кобальта: эксперимент, моделирование и теория // ТВТ. 2018. Т. 56. № 2. С. 211.
  22. Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics // J. Comput. Phys. 1995. V. 117. P. 1.
  23. Sheng H.W., Ma E., Kramer M.J. Relating Dynamic Properties to Atomic Structure in Metallic Glasses // JOM. 2012. V. 64. P. 856.
  24. Bonny G., Pasianot R.C., Malerba L. Fe–Ni Many-Body Potential for Metallurgical Applications // Modelling Simul. Mater. Sci. Eng. 2009. V. 17. P. 025010.
  25. Verlet L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard–Jones Molecules // Phys. Rev. 1967. V. 159. P. 98.
  26. Chapman S., Cowling T.G. The Mathematical Theory of Non-uniform Gases. Cambridge: Cambridge University Press, 1970. 448 p.
  27. Maffoli L., Clisby N., Frascoli F., Todd B.D. Computation of the Equilibrium Three-particle Entropy for Dense Atomic Fluids by Molecular Dynamics Simulation // J. Chem. Phys. 2019. V. 151. P. 164102.
  28. Kirkwood J.G., Boggs S.M. The Radial Distribution Function in Liquids // J. Chem. Phys. 1942. V. 10. P. 394.
  29. Hoyt J.J., Asta M., Sadigh B. Test of the Universal Scaling Law for the Diffusion Coefficient in Liquid Metals // Phys. Rev. Lett. 2000. V. 85. P. 594.
  30. Bell I.H., Dyre J.C., Ingebrigtsen T.S. Excess-entropy Scaling in Supercooled Binary Mixtures // Nature Commun. 2020. V. 11. P. 4300.
  31. Khusnutdinoff R.M., Khairullina R.R., Beltyukov A.L., Lad’yanov V.I., Mokshin A.V. Viscous Properties of Nickel-containing Binary Metal Melts // J. Phys.: Condens. Matter. 2021. V. 33. P. 104006.
  32. Li G.X., Liu C.S., Zhu Z.G. Excess Entropy Scaling for Transport Coefficients: Diffusion and Viscosity in Li-quid Metals // J. Non-Cryst. Solids. 2005. V. 351. P. 946.
  33. Schenk T., Holland-Moritz D., Simonet V., Bellisent R., Herlach D.M. Icosahedral Short-Range Order in Deeply Undercooled Metallic Melts // Phys. Rev. Lett. 2002. V. 89. P. 075507.
  34. Kirova E.M., Norman G.E. Viscosity Calculations at Molecular Dynamics Simulations // J. Phys.: Conf. Ser. 2015. V. 653. P. 012106.
  35. Meyer A., Stuber S., Holland-Moritz D., Heinen O., Unruh T. Determination of Self-diffusion Coefficients by Quasielastic Neutron Scattering Measurements of Levitated Ni Droplets // Phys. Rev. B. 2008. V. 77. P. 092201.
  36. Chathoth S.M., Meyer A., Koza M.M., Juranyi F. Atomic Diffusion in Liquid Ni, NiP, PdNiP, and PdNiCuP Alloys // Appl. Phys. Lett. 2004. V. 85. P. 4881.
  37. Iida T., Guthrie R.I.L. The Thermophysical Properties of Metallic Liquids. V. 2. Predictive Models. Oxford: Oxford Press, 2015. 152 p.
  38. Assael M.J., Kalyva A.E., Antoniadis K.D., Banish R.M., Egry I., Wu J.T., Kaschnitz E., Wakeham W.A. Refe-rence Data for the Density and Viscosity of Liquid Antimony, Bismuth, Lead, Nickel and Silver // High Temp.‒High Press. 2012. V. 41. P. 161.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (120KB)
3.

Download (68KB)
4.

Download (78KB)
5.

Download (55KB)

Copyright (c) 2023 Р.М. Хуснутдинов, Р.Р. Хайруллина, А.Л. Бельтюков, И.В. Стерхова, А.А. Суслов, В.И. Ладьянов, А.В. Мокшин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies