On Some Criterial Models of Convective Heat Transfer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is known that the results of calculations for various criterial models of convective heat transfer may differ from each other, which, according to existing ideas, is usually associated with different operating conditions of the heat exchangers under study. In the work, thermal engineering experiments are carried out with a laboratory water-to-water tubular heat exchanger of the “pipe-in-pipe” type with smooth tubes at normal pressure and moderate temperatures at various inlet temperatures of the heat carriers and their flow rates. The results of the experiment are compared with the results of calculations based on the models of B.S. Petukhova, S.S. Kutateladze, Nusselt, and M.A. Mikheev. The comparison shows that the discrepancies between the experiment and the models, as well as between the models themselves, stem not only from experimental inaccuracies, but also from inaccuracies in the models themselves.

About the authors

A. A. Konoplev

Federal State Budgetary Institution of Science, Federal Research Center for Chemical Physics. N.N. Semenov Russian Academy of Sciences

Email: alexey.konoplyov@gmail.com
ul. Kosygina 4, 119991, Moscow, Russia

B. L. Rytov

Federal State Budgetary Institution of Science, Federal Research Center for Chemical Physics. N.N. Semenov Russian Academy of Sciences

Email: alexey.konoplyov@gmail.com
ul. Kosygina 4, 119991, Moscow, Russia

Al. Al. Berlin

Federal State Budgetary Institution of Science, Federal Research Center for Chemical Physics. N.N. Semenov Russian Academy of Sciences

Email: alexey.konoplyov@gmail.com
ul. Kosygina 4, 119991, Moscow, Russia

S. V. Romanov

LLC NPP Energosystems

Author for correspondence.
Email: alexey.konoplyov@gmail.com
Semenovskaya nab. 2/1, 105094, Moscow, Russia

References

  1. Коноплев А.А., Рытов Б.Л., Берлин Ал.Ал., Романов С.В. О теплоотдаче трубчатого водо-водяного теплообменника и ее оценках по некоторым критериальным моделям. // Теорет. основы хим. технологии. 2022. Т. 56. № 6. С. 712.
  2. Коноплев А.А., Алексанян Г.Г., Рытов Б.Л., Берлин Ал.Ал. Расчет локальных параметров интенсифицированного теплообмена. // Теорет. основы хим. технологии. 2007. Т. 41. № 6. С. 692.
  3. Михеев М.А. Теплоотдача при турбулентном движении жидкости в трубах. Известия АН СССР, ОТН. 1952. № 10.
  4. Тепло- и массообмен. Теплотехнический эксперимент: Справочник / Е.В. Аметистов, В.А. Григорьев, Б.Т. Емцев и др.; Под общ. Ред. В.А. Григорьева и В.М. Зорина. М.: Энергоиздат, 1982.
  5. Кутателадзе С.С. Теплопередача и гидравлическое сопротивление: Справочное пособие. М.: Энергоатомиздат, 1990.
  6. Михеев М.А. Средняя теплоотдача при движении жидкости в трубах: Сборник “Теплопередача и тепловое моделирование”. М.: Изд-во АН СССР, 1959.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (569KB)
3.

Download (614KB)
4.

Download (659KB)
5.

Download (313KB)

Copyright (c) 2023 А.А. Коноплев, Б.Л. Рытов, Ал.Ал. Берлин, С.В. Романов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies