Comparative analysis of UN and UO2 oxidation in air and nitrogen hemioxide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Oxidation of UO2 and UN by atmospheric oxygen and nitrogen hemioxide, which is a hard-to-localize greenhouse gas, was investigated by thermal analysis. For oxidation, mixtures of N2O-N2 and O2-N2 were used with a volume fraction of the oxidizing agent of 20%. For UO2 and UN, the phase composition of the nal oxidation product in air and in N2O is the same and is U3O8. In both cases, N2O behaves as a milder oxidizing agent compared to atmospheric oxygen. Oxidation of UO2 and UN in a ow of N2O begins at a temperature 180 and 70°C higher than in air, respectively. The oxidation of UN in a ow of N2O proceeds in three stages. At the rst stage, the reaction products are UO2 and U2N3; UO2 is the product of the second stage; and at the third age U3O8 is produced. No pronounced staging is observed in the process of UO2 oxidation. The possibility of utilizing nitrogen hemioxide when it is used in the process of voloxidation (oxidation) of spent nuclear fuel is shown

About the authors

M. I. Volgin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences;Lomonosov State University

Email: forfschool@mail.ru

S. A. Kulyukhin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Yu. M. Nevolin

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

References

  1. Goode J.H. Voloxidation-Removal of Volatile Fission Products from Spent LMFBR Fuels: ORNL-TM-3723. Oak Ridge, Tennessee, the United States: Oak Ridge National Laboratory, 1973. 137 p.
  2. Allbutt M., Dell R.M. // J. Nucl. Mater. 1967. Vol. 24. N 1. P. 1-20.
  3. Grachev A.F., Zabudko L.M., Mochalov Y.S., Zvir E.A., Kryukov F.N., Zozulya D.V., Ivanov Y.A., Skupov M.V. Development of innovative fast reactor nitride fuel in Russian Federation: State-of-art // Int. Conf. on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17). Vienna, Austria, 2017.
  4. Dell R.M., Wheeler V.J., McIver E.J. // Trans. Faraday Soc. 1966. Vol. 62. P. 3591-3606.
  5. Ohmichi T., Honda T. // J. Nucl. Sci. Technol. 1968. Vol. 5, N 11. P. 600-602.
  6. Dell R.M., Wheeler V.J. // J. Nucl. Mater. 1967. Vol. 21, N 3. P. 328-336.
  7. Sole M.J., Van der Walt C.M. // Acta Metall. 1968. Vol. 16, N 4. P. 501-510.
  8. Rama Rao G.A., Mukerjee S.K., Vaidya V.N., Venugopal V., Sood D.D. // J. Nucl. Mater. 1991. Vol. 185. P. 231-241.
  9. Kulyukhin S.A., Nevolin Y.M., Gordeev A.V., Bessonov A.A. // Radiochemistry. 2019. Vol. 61, N 2. P. 146-155.
  10. Shadrin A.Y., Dvoeglazov K.N., Mochalov Y.S., Vidanov V.V, Kashcheev V.A., Terentiev A.G., Gerasimenko M.N., Cheshuyakov S.A. // J. Phys. Conf. Ser. 2020. Vol. 1475. Article 012021.
  11. Konings R.J.M. Comprehensive Nuclear Materials. Vol. 3: Advanced Fuels. Fuel Cladding. Nuclear Fuel Performance. Modeling and Simulation. Amsterdam: Elsevier, 2012. 818 p.
  12. Hadibi-Olschewski N., Glatz J.P., Bokelund H., Leroy M.J.F. // J. Nucl. Mater. 1992. Vol. 188. P. 244-248.
  13. Kulyukhin S.A., Rumer I.A., Gorbacheva M.P., Bessonov A.A. // Radiochemistry. 2020. Vol. 62, N 2. P. 177-188.
  14. Wang W.C., Yung Y.L., Lacis A.A., Mo T., Hansen J.E. // Science. 1976. Vol. 194, N 4266. P. 685-690.
  15. Khalil M.A.K. // Annu. Rev. Energy Environ. 1999. Vol. 24, N 1. P. 645-661.
  16. Kulyukhin S.A., Shadrin A.Y., Voskresenskaya Y.A., Bessonov A.A., Ustinov O.A. // J. Radioanal. Nucl. Chem. 2015. Vol. 304, N 1. P. 425-428.
  17. Рябков Д.В., Зильберман Б.Я., Мишина Н.Е., Андреева Е.В., Водкайло А.Г., Шадрин А.Ю., Костромин К.В. Патент RU 2596816C1. 2015.
  18. Walker D.D., Hobbs D.T., Tiffany J.B., Bibler N.E., Meisel D. Nitrous oxide production from radiolysis of simulated high-level nuclear waste solutions, no. WSRC-MS-91-446; CONF-920307-78. Aiken, SC, the United States, 1992.
  19. Kapteijn F., Rodriguez-Mirasol J., Moulijn J.A. // Appl. Catal. B: Environmental. 1996. Vol. 9, N 1-4. P. 25-64.
  20. Konsolakis M. // ACS Catal. 2015. Vol. 5, N 11. P. 6397-6421.
  21. Дроздов А.А., Зломанов В.П., Мазо Г.Н., Спиридонов Ф.М. Неорганическая химия: В 3 т. / Под ред. Ю.Д. Третьякова. Т. 2: Химия непереходных элементов: Учебник для студ. высш. учеб. заведений. М.: Академия, 2004. 368 с.
  22. Mors L.R., Edelstein N.M., Fuger J. Actinide and Transactinide Elements. Dordrecht: Springer, 2008. 2nd ed. 4058 p.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies