Measurement of Soil Organic Carbon Pools Isolated Using Bio-Physical-Chemical Fractionation Methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The studies were performed with samples from different horizons of soddy podzolic soil (Albic Retisol) and typical chernozem (Haplic Chernozems) collected under natural lands and arable fields. The carbon contents in structural (particulate organic matter of 2-0.05 mm in size (CPOM) and mineral-associated organic matter of <0.05 mm in size (CMAOM)) and process (potentially mineralizable organic matter (C0) and microbial biomass (Cmic)) pools were determined. In the humus horizon of virgin and arable sod-podzolic soils, the CPOM, CMAOM, C0, and Cmic pools contained 38 and 24, 56 and 72, 5.9 and 5.6, 1.2 and 1.3% of Corg, respectively. The sizes of these pools in virgin and arable chernozem were 42 and 30, 53 and 68, 3.6 and 2.8, 0.5 and 0.5% of Corg, respectively. The emission potential of CPOM pool despite the small mass of the POM fraction was comparable to CMAOM pool having the large MAOM fraction. A method for quantitative separation of soil organic matter (SOM) into active, intermediate (slow), and passive pools has been proposed. The size of the SOM active pool were determined based on the Сmic and C0 contents, and the size of the passive pool were measured by the chemically non-oxidizable organic matter in POM and MAOM fractions. The intermediate pool size was calculated by the difference between the total organic carbon and the sum of the active and passive pools. The active, intermediate and passive pools of the studied soils contained 1–7, 51–81 and 13–48% of Сorg, respectively without any significant between different land uses.

About the authors

V. M. Semenov

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

Author for correspondence.
Email: v.m.semenov@mail.ru
Russia, 142290, Pushchino

T. N. Lebedeva

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

Email: v.m.semenov@mail.ru
Russia, 142290, Pushchino

D. A. Sokolov

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

Email: v.m.semenov@mail.ru
Russia, 142290, Pushchino

N. B. Zinyakova

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

Email: v.m.semenov@mail.ru
Russia, 142290, Pushchino

V. O. Lopes de Gerenu

Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences

Email: v.m.semenov@mail.ru
Russia, 142290, Pushchino

M. V. Semenov

Dokuchaev Soil Science Institute, Russian Academy of Sciences

Email: v.m.semenov@mail.ru
Russia, 119017 , Moscow

References

  1. Ананьева Н.Д., Сусьян Е.А., Гавриленко Е.Г. Особенности определения углерода микробной биомассы почвы методом субстрат-индуцированного дыхания // Почвоведение. 2011. № 11. С. 1327–1333.
  2. Артемьева З.С. Органическое вещество и гранулометрическая система почвы. М.: ГЕОС, 2010. 240 с.
  3. Дымов А.А., Милановский Е.Ю., Холодов В.А. Состав и гидрофобные свойства органического вещества денсиметрических фракций почв Приполярного Урала // Почвоведение. 2015. № 11. С. 1335–1345. https://doi.org/10.7868/S0032180X15110052
  4. Когут Б.М. Принципы и методы оценки содержания трансформируемого органического вещества в пахотных почвах // Почвоведение. 2003. № 3. С. 308–316.
  5. Когут Б.М., Семенов В.М., Артемьева З.С., Данченко Н.Н. Дегумусирование и почвенная секвестрация углерода // Агрохимия. 2021. № 5. С. 3–13. https://doi.org/10.31857/S0002188121050070
  6. Иванов А.Л., Когут Б.М., Семенов В.М., Оберландер М.И., Шанбахер Н. Развитие учения о гумусе и почвенном органическом веществе: от Тюрина и Ваксмана до наших дней // Бюл. Почв. ин-та им. В.В. Докучаева. 2017. Вып. 90. С. 3–38. https://doi.org/10.19047/0136-1694-2017-3-38
  7. Ларионова А.А., Золотарева А.Н., Евдокимов И.В., Быховец С.С., Кузяков Я., Бюггер Ф. Идентификация лабильного и устойчивого пулов органического вещества в агросерой почве // Почвоведение. 2011. № 6. С. 685–698.
  8. Моргун Е.Г., Макаров М.И. Использование поливольфрамата натрия при грануло-денсиметрическом фракционировании почвенного материала // Почвоведение. 2011. № 4. С. 433–438.
  9. Овсепян Л.А., Курганова И.Н., Лопес де Гереню В.О., Русаков А.В., Кузяков Я.В. Изменение денситометрического фракционного состава органического вещества почв лесостепной зоны в процессе постагрогенной эволюции // Почвоведение. 2020. № 1. С. 56–68. https://doi.org/10.31857/S0032180X20010128
  10. Семенов В.М., Журавлев Н.С., Тулина А.С. Минерализация органического вещества в серой лесной почве и типичном черноземе, обесструктуренных физическими воздействиями // Почвоведение. 2015. № 10. С. 1254–1266. https://doi.org/10.7868/S0032180X1510010X
  11. Семенов В.М., Иванникова Л.А., Кузнецова Т.В., Семенова Н.А. Роль растительной биомассы в формировании активного пула органического вещества почвы // Почвоведение. 2004. № 11. С. 1350–1359.
  12. Семенов В.М., Когут Б.М., Зинякова Н.Б., Масютенко Н.П., Малюкова Л.С., Лебедева Т.Н., Тулина А.С. Биологически активное органическое вещество в почвах европейской части России // Почвоведение. 2018. № 4. С. 457–472. https://doi.org/10.7868/S0032180X1804007X
  13. Семенов В.М., Лебедева Т.Н., Зинякова Н.Б., Соколов Д.А. Размеры и соотношения пулов органического углерода в серой лесной почве при многолетнем применении минеральных и органических удобрений // Почвоведение. 2023. № 4. С. 482–501. https://doi.org/10.31857/S0032180X22601426
  14. Семенов В.М., Лебедева Т.Н., Лопес де Гереню В.О., Овсепян Л.А., Семенов М.В., Курганова И.Н. Пулы и фракции органического углерода в почве: структура, функции и методы определения // Почвы и окружающая среда. 2023. Т. 6. № 1. e199. https://doi.org/10.31251/pos.v6i1.199
  15. Семенов В.М., Лебедева Т.Н., Паутова Н.Б. Дисперсное органическое вещество в необрабатываемых и пахотных почвах // Почвоведение. 2019. № 4. С. 440–450. https://doi.org/10.1134/S0032180X19040130
  16. Семенов В.М., Паутова Н.Б., Лебедева Т.Н., Хромычкина Д.П., Семенова Н.А., Лопес де Гереню В.О. Разложение растительных остатков и формирование активного органического вещества в почве инкубационных экспериментов // Почвоведение. 2019. № 10. С. 1172–1184. https://doi.org/10.1134/S0032180X19100113
  17. Семенов В.М., Тулина А.С., Семенова Н.А., Иванникова Л.А. Гумификационные и негумификационные пути стабилизации органического вещества в почве (обзор) // Почвоведение. 2013. № 4. С. 393–407. https://doi.org/10.7868/S0032180X13040114
  18. Соколов Д.А., Дмитревская И.И., Паутова Н.Б., Лебедева Т.Н., Черников В.А., Семенов В.М. Исследование стабильности почвенного органического вещества методами дериватографии и длительной инкубации // Почвоведение. 2021. № 4. С. 407–419. https://doi.org/10.31857/S0032180X21040146
  19. Старцев В.В., Мазур А.С., Дымов А.А. Содержание и состав органического вещества почв Приполярного Урала // Почвоведение. 2020. № 12. С. 1478–1488. https://doi.org/10.31857/S0032180X20120114
  20. Травникова Л.С., Артемьева З.С., Сорокина Н.П. Распределение гранулоденсиметрических фракций в дерново-подзолистых почвах, подверженных плоскостной эрозии // Почвоведение. 2010. № 4. С. 495–504.
  21. Arevalo C.B.M., Chang S.X., Bhatti J.S., Sidders D. Mineralization Potential and Temperature Sensitivity of Soil Organic Carbon under Different Land Uses in the Parkland Region of Alberta, Canada // Soil Sci. Soc. Am. J. 2012. V. 76(1). P. 241–251. https://doi.org/10.2136/sssaj2011.0126
  22. Benbi D.K., Boparai A.K., Brar K. Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter // Soil Biol. Biochem. 2014. V. 70. P. 183–192. https://doi.org/10.1016/j.soilbio.2013.12.032
  23. Blankinship J.C., Berhe A.A., Crow S.E., Druhan J.L., Heckman K.A., Keiluweit M., Lawrence C.R., Marín-Spiotta E., Plante A.F., Rasmussen C., Schädel C., Schimel J.P., Sierra C.A., Thompson A., Wagai R., Wieder W.R. Improving understanding of soil organic matter dynamics by triangulating theories, measurements, and models // Biogeochemistry. 2018. V. 140. P. 1–13. https://doi.org/10.1007/s10533-018-0478-2
  24. Bruun S., Ågren G.I., Christensen B.T., Jensen L.S. Measuring and modeling continuous quality distributions of soil organic matter // Biogeosciences. 2010. V. 7(1). P. 27–41. https://doi.org/10.5194/bg-7-27-2010
  25. Cambardella C.A., Elliott E.T. Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence // Soil Sci. Soc. Am. J. 1992. V. 56(3). P. 777–783. https://doi.org/10.2136/sssaj1992.03615995005600030017x
  26. Cao M., Woodward F. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change // Nature. 1998. V. 393. P. 249–252. https://doi.org/10.1038/30460
  27. Christensen B.T. Physical fractionation of soil and structural and functional complexity in organic matter turnover // Eur. J. Soil. Sci. 2001. V. 52(3). P. 345–353. https://doi.org/10.1046/j.1365-2389.2001.00417.x
  28. Ciais P., Sabine C., Bala G., Bopp L., Brovkin V., Canadell J., Chhabra A., DeFries R., Galloway J., Heimann M., Jones C., Le Quéré C., Myneni R.B., Piao S., Thornton P. Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. P. 465–570.
  29. Cochran R.L., Collins H.P., Kennedy A., Bezdicek D.F. Soil carbon pools and fluxes after land conversion in a semiarid shrub-steppe ecosystem // Biol. Fert. Soils. 2007. V. 43. P. 479–489. https://doi.org/10.1007/s00374-006-0126-1
  30. Conant R.T., Ryan M.G., Ågren G.I., Birge H.E., Davidson E.A., Eliasson P.E., Evans S.E., Frey S.D., Giardina C.P., Hopkins F.M., Hyvönen R., Kirschbaum M.U.F., Lavallee J.M., Leifeld J., Parton W.J., Steinweg J.M., Wallenstein M.D., Wetterstedt J.Å.M., Bradford M.A. Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward // Global Change Biol. 2011. V. 17(11). P. 3392–3404. https://doi.org/10.1111/j.1365-2486.2011.02496.x
  31. Cookson W.R., Abaye D.A., Marschner P., Murphy D.V., Stockdale E.A., Goulding K.W.T. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure // Soil Biol. Biochem. 2005. V. 37. P. 1726–1737. https://doi.org/10.1016/j.soilbio.2005.02.007
  32. Cotrufo M.F., Ranalli M.G., Haddix M.L., Six J., Lugato E. Soil carbon storage informed by particulate and mineral-associated organic matter // Nature Geoscience. 2019. V. 12. P. 989–994. https://doi.org/10.1038/s41561-019-0484-6
  33. Cotrufo M.F., Wallenstein M.D., Boot C.M., Denef K., Paul E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? // Global Change Biol. 2013. V. 19(4). P. 988–995. https://doi.org/10.1111/gcb.12113
  34. Franzluebbers A.J., Arshad M.A. Particulate organic carbon content and potential mineralization as affected by tillage and texture // Soil Sci. Soc. Am. J. 1997. V. 61(5). P. 1382–1386. https://doi.org/10.2136/sssaj1997.03615995006100050014x
  35. Golchin A., Oades J.M., Skjemstad J.O., Clarke P. Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy // Austr. J. Soil Res. 1994. V. 32(2). P. 285–309. https://doi.org/10.1071/SR9940285
  36. Gregorich E.G., Beare M.H., McKim U.F., Skjemstad J.O. Chemical and biological characteristics of physically uncomplexed organic matter // Soil Sci. Soc. Am. J. 2006. V. 70(3). P. 975–985. https://doi.org/10.2136/sssaj2005.0116
  37. Guo D., X. Li, Wang J., Niu D., Guo W., Fu H., Luo Y. Edaphic and microbial determinants of the residence times of active and slow C pools on the Tibetan Plateau // Geoderma. 2020. V. 357. P. 113942. https://doi.org/10.1016/j.geoderma.2019.113942
  38. Haddix M.L., Gregorich E.G., Helgason B.L., Janzen H., Ellert B.H., Cotrufo M. F. Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil // Geoderma. 2020. V. 363. P. 114160. https://doi.org/10.1016/j.geoderma.2019.114160
  39. Hassink J. Decomposition Rate Constants of Size and Density Fractions of Soil Organic Matter // Soil Sci. Soc. Am. J. 1995. V. 59(6). P. 1631–1635. https://doi.org/10.2136/sssaj1995.03615995005900060018x
  40. Hayes M.H.B. Solvent Systems for the Isolation of Organic Components from Soils // Soil Sci. Soc. Am. J. 2006. V. 70(3). P. 986–994. https://doi.org/10.2136/sssaj2005.0107
  41. Helfrich M., Flessa H., Mikutta R., Dreves A., Ludwig B. Comparison of chemical fractionation methods for isolating stable soil organic carbon pools // Eur. J. Soil Sci. 2007. V. 58(6). P. 1316–1329. https://doi.org/10.1111/j.1365-2389.2007.00926.x
  42. Hijbeek R., van Ittersum M.K., ten Berge H.F.M., Gort G., Spiegel H., Whitmore A.P. Do organic inputs matter – a meta-analysis of additional yield effects for arable crops in Europe // Plant and Soil. 2017. V. 411. P. 293–303. https://doi.org/10.1007/s11104-016-3031-x
  43. Islam M.R., Singh B., Dijkstra F.A. Stabilisation of soil organic matter: interactions between clay and microbes // Biogeochemistry. 2022. V. 160. P. 145–158. https://doi.org/10.1007/s10533-022-00956-2
  44. Jagadamma S., Steinweg J.M., Mayes M.A., Wang G., Post W.M. Decomposition of added and native organic carbon from physically separated fractions of diverse soils // Biol. Fertil. Soils. 2014. V. 50. P. 613–621. https://doi.org/10.1007/s00374-013-0879-2
  45. John B., Yamashita T., Ludwig B., Flessa H. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use // Geoderma. 2005. V. 128. P. 63–79. https://doi.org/10.1016/j.geoderma.2004.12.013
  46. Kögel-Knabner I., Guggenberger G., Kleber M., Kandeler E., Kalbitz K., Scheu S., Eusterhues K., Leinweber P. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry // J. Plant Nutr. Soil Sci. 2008. V. 171(1). P. 61–82. https://doi.org/10.1002/jpln.200700048
  47. Kögel-Knabner I., Wiesmeier M., Mayer S. Mechanisms of soil organic carbon sequestration and implications for management // Understanding and fostering soil carbon sequestration. Cambridge: Burleigh Dodds Sci. Publ. Lim. 2022. P. 1–36. https://doi.org/10.19103/AS.2022.0106.02
  48. Körschens M. Long-term field experiments as the basis for practice-oriented humus research – a review // Modern Concepts Developments in Agronomy. 2021. V. 9. P. 922–924. https://doi.org/10.31031/MCDA.2021.09.000714
  49. Kuzyakov Y. How to link soil C pools with CO2 fluxes? // Biogeosciences. 2011. V. 8(6). P. 1523–1537. https://doi.org/10.5194/bg-8-1523-2011
  50. Kuzyakov Y., Zamanian K. Reviews and syntheses: Agropedogenesis – humankind as the sixth soil-forming factor and attractors of agricultural soil degradation // Biogeosciences. 2019. V. 16(24). P. 4783–4803. https://doi.org/10.5194/bg-16-4783-2019
  51. Lal R. Managing Soils and Ecosystems for Mitigating Anthropogenic Carbon Emissions and Advancing Global Food Security // BioScience. 2010. V. 60(9). P. 708–721. https://doi.org/10.1525/bio.2010.60.9.8
  52. Lavallee J.M., Soong J.L., Cotrufo M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century // Global Change Biol. 2020. V. 26(1). P. 261–273. https://doi.org/10.1111/gcb.14859
  53. Leifeld J., Kögel-Knabner I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use? // Geoderma. 2005. V. 124. P. 143–155. https://doi.org/10.1016/j.geoderma.2004.04.009
  54. Li J., Ramirez G.H., Kiani M., Quideau S., Smith E., Janzen H., Larney F., Puurveen D. Soil organic matter dynamics in long-term temperate agroecosystems: rotation and nutrient addition effects // Can. J. Soil Sci. 2018. V. 98(2). P. 232–245. https://doi.org/10.1139/cjss-2017-0127
  55. Liang C. Soil microbial carbon pump: Mechanism and appraisal // Soil Ecol. Lett. 2020. V. 2. P. 241–254. https://doi.org/10.1007/s42832-020-0052-4
  56. Liang C., Amelung W., Lehmann J., Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter // Global Change Biol. 2019. V. 25(11). P. 3578–3590. https://doi.org/10.1111/gcb.14781
  57. Marschner B., Brodowski S., Dreves A., Gleixner G., Gude A., Grootes P.M., Hamer U., Heim A., Jandl G., Ji R., Kaiser K., Kalbitz K. C. Kramer, Leinweber P., Rethemeyer J., Schäffer A., Schmidt M.W.I., Schwark L., Wiesenberg G.L.B. How relevant is recalcitrance for the stabilization of organic matter in soils? // J. Plant Nutr. Soil Sci. 2008. V. 171(1). P. 91–110. https://doi.org/10.1002/jpln.200700049
  58. Mazzilli S.R., Kemanian A.R., Ernst O.R., Jackson R.B., Piñeiro G. Greater humification of belowground than aboveground biomass carbon into particulate soil organic matter in no-till corn and soybean crops // Soil Biol. Biochem. 2015. V. 85. P. 22–30. https://doi.org/10.1016/j.soilbio.2015.02.014
  59. Merino A., Ferreiro A., Salgado J., Fontúrbel M.T., Barros N., Fernández C., Vega J.A. Use of thermal analysis and solid-state 13C CP-MAS NMR spectroscopy to diagnose organic matter quality in relation to burn severity in Atlantic soils // Geoderma. 2014. V. 226–227. P. 376–386. https://doi.org/10.1016/j.geoderma.2014.03.009
  60. Mikutta R., Kleber M., Kaiser K., Jahn R. Organic Matter Removal from Soils using Hydrogen Peroxide, Sodium Hypochlorite, and Disodium Peroxodisulfate // Soil Sci. Soc. Am. J. 2005. V. 69(1). P. 120–135. https://doi.org/10.2136/sssaj2005.0120
  61. Oldfield E.E., Bradford M.A., Wood S.A. Global meta-analysis of the relationship between soil organic matter and crop yields // Soil. 2019. V. 5(1). P. 15–32. https://doi.org/10.5194/soil-5-15-2019
  62. Paul E.A., Morris S.J., Conant R.T., Plante A.F. Does the acid hydrolysis–incubation method measure meaningful soil organic carbon pools? // Soil Sci. Soc. Amer. J. 2006. V. 70(3). P. 1023–1035. https://doi.org/10.2136/sssaj2005.0103
  63. Poeplau C., Don A., Six J., Kaiser M., Benbi D., Chenu C., Cotrufo M.F. et al. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison // Soil Biol. Biochem. 2018. V. 125. P. 10–26. https://doi.org/10.1016/j.soilbio.2018.06.025
  64. Rabbi S.M.F., Wilson B.R., Lockwood P.V., Daniel H., Young I.M. Soil organic carbon mineralization rates in aggregates under contrasting land uses // Geoderma. 2014. V. 216. P. 10–18. https://doi.org/10.1016/j.geoderma.2013.10.023
  65. Rumpel C., Chabbi A. Managing Soil Organic Carbon for Mitigating Climate Change and Increasing Food Security // Agronomy. 2021. V. 11. P. 1553. https://doi.org/10.3390/agronomy11081553
  66. Schädel C., Luo Y., Evans R.D., Fei S., Schaeffer S.M. Separating soil CO2 efflux into C-pool-specific decay rates via inverse analysis of soil incubation data // Oecologia. 2013. V. 171. P. 721–732. https://doi.org/10.1007/s00442-012-2577-4
  67. Schimel J. Modeling ecosystem-scale carbon dynamics in soil: The microbial dimension // Soil Biol. Biochem. 2023. V. 178. P. 108948. https://doi.org/10.1016/j.soilbio.2023.108948
  68. Schwendenmann L., Pendall E. Response of soil organic matter dynamics to conversion from tropical forest to grassland as determined by long-term incubation // B-iol. Fertil. Soils. 2008. V. 44. P. 1053–1062. https://doi.org/10.1007/s00374-008-0294-2
  69. Sherrod L.A., Peterson G.A., Westfall D.G., Ahuja L.R. Soil Organic Carbon Pools After 12 Years in No-Till Dryland Agroecosystems // Soil Sci. Soc. Am. J. 2005. V. 69(5). P. 1600–1608. https://doi.org/10.2136/sssaj2003.0266
  70. Six J., Conant R.T., Paul E.A., Paustian K. Stabilisation mechanisms of soil organic matter: implications for C-saturation of soil // Plant and Soil. 2002. V. 241. P. 155–176. https://doi.org/10.1023/A:1016125726789
  71. Sohi S.P., Mahieu N., Arah J.R.M., Powlson D.S., Madari B., Gaunt J.L. A Procedure for Isolating Soil Organic Matter Fractions Suitable for Modeling // Soil Sci. Soc. Am. J. 2001. V. 65(4). P. 1121–1128. https://doi.org/10.2136/sssaj2001.6541121x
  72. Soucémarianadin L.N., Cécillon L., Guenet B., Chenu C., Baudin F., Nicolas M., Girardin C., Barré P. Environmental factors controlling soil organic carbon stability in French forest soils // Plant and Soil. 2018. V. 426. P. 267–286. https://doi.org/10.1007/s11104-018-3613-x
  73. Trumbore S.E. Potential responses of soil organic carbon to global environmental change // Proc. Nat. Acad. Sci. (PNAS). 1997. V. 94(16). P. 8284–8291. https://doi.org/10.1073/pnas.94.16.828
  74. von Lützow M., Kögel-Knabner I., Ekschmitt K., Flessa H., Guggenberger G., Matzner E., Marschner B. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms // Soil Biol. Biochem. 2007. V. 39. P. 2183–2207. https://doi.org/10.1016/j.soilbio.2007.03.007
  75. von Lützow M., Kögel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., Flessa H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions – a review // Eur. J. Soil Sci. 2006. V. 57(4). P. 426–445. https://doi.org/10.1111/j.1365-2389.2006.00809.x
  76. von Lützow M., Kögel-Knabner I., Ludwig B., Matzner E., Flessa H., Ekschmitt K., Guggenberger G., Marschner B., Kalbitz K. Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model // J. Plant Nutr. Soil Sci. 2008. V. 171(1). P. 111–124. https://doi.org/10.1002/jpln.200700047
  77. Wagai R., Mayer L.M., Kitayama K., Knicker H. Climate and parent material controls on organic matter storage in surface soils: A three-pool, density-separation approach // Geoderma. 2008. V. 147. P. 23–33. https://doi.org/10.1016/j.geoderma.2008.07.010
  78. Wander M. Soil Organic Matter Fractions and Their Relevance to Soil Function // Soil organic matter in sustainable agriculture. Boca Raton etc: CRC Press, 2004. P. 67–102. https://doi.org/10.1201/9780203496374
  79. Xiao K.Q., Zhao Y., Liang C., Zhao M., Moore O.W., Otero-Fariña A., Zhu Y.G., Johnson K., Peacock C.L. Introducing the soil mineral carbon pump // Nature Rev. Earth Environ. 2023. https://doi.org/10.1038/s43017-023-00396-y
  80. Xiao W., Feng S., Liu Z., Su Y., Zhang Y., He X. Interactions of soil particulate organic matter chemistry and microbial community composition mediating carbon mineralization in karst soils // Soil Biol. Biochem. 2017. V. 107. P. 85–93. https://doi.org/10.1016/j.soilbio.2016.12.025
  81. Zhou W., Wen S., Zhang Y., Gregory A.S., Xu M., Shah S.A.A., Zhang W., Wu H., Hartley I.P. Long-term fertilization enhances soil carbon stability by increasing the ratio of passive carbon: evidence from four typical croplands // Plant and Soil. 2022. V. 478. P. 579–595. https://doi.org/10.1007/s11104-022-05488-0
  82. Zimmermann M., Leifeld J., Abiven S., Schmidt M.W.I., Fuhrer J. Sodium hypochlorite separates an older soil organic matter fraction than acid hydrolysis // Geoderma. 2007. V. 139(1–2). P. 171–179. https://doi.org/10.1016/j.geoderma.2007.01.014
  83. Zimmermann M., Leifeld J., Schmidt M.W.I., Smith P., Fuhrer J. Measured soil organic matter fractions can be related to pools in the RothC model // Eur. J. Soil Sci. 2007. V. 58(3). P. 658–667. https://doi.org/10.1111/j.1365-2389.2006.00855.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (190KB)
3.

Download (143KB)
4.

Download (591KB)
5.

Download (104KB)

Copyright (c) 2023 В.М. Семенов, Т.Н. Лебедева, Д.А. Соколов, Н.Б. Зинякова, В.О. Лопес де Гереню, М.В. Семенов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies