Structure and Temporal Variability of the Northern Branch of the Antarctic Circumpolar Current in the Drake Passage

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Antarctic Circumpolar Current plays the key role in the circulation of the Southern Ocean and affects the distribution of heat by the ocean on the global scale. The study of the dynamics and structure of this current becomes especially important in a changing climate. The current is well revealed by satellite altimetry data, which makes possible to study temporal and spatial variability of its structure at different scales. In these studies, the methods for determining the position of individual fronts of the Antarctic Circumpolar Current based on satellite altimetry data become especially important. In this work, we compare various approaches for detection of front locations. The structure of the northernmost branch of the Antarctic Circumpolar Current, the Subantarctic Front, and its spatial and temporal variability was studied based on satellite altimetry data from 1993 to 2020 and the results of a hydrographical section occupied by the R/V “Akademik Mstislav Keldysh” in the northern part of the Drake Passage in February 2020. We selected a 350 km long part of the TOPEX/Poseidon and Jason-1,2,3 satellite altimeter track from Tierra del Fuego to the south for the analysis of the dynamics of the front. Criteria for determining the position of the northern and main branches of the Subantarctic Front are presented based on satellite altimetry data. A long-term shift of the position of the fronts relative to the previously accepted levels of absolute dynamic topography has been found. It was found that the accuracy of determining the position of fronts using fixed values of dynamic topography may decrease with time, in particular due to changes in the mean sea level. A statistically significant long-term trend of sea level rise in the region of the Subantarctic Front was found. This trend is 4 mm/yr for the northern branch and 2.5 mm/yr for the main branch.

About the authors

S. A. Ostroumova

Shirshov Institute of Oceanology, Russian Academy of Sciences; Russian State Hydrometeorological University

Author for correspondence.
Email: ost.sophisticated@gmail.com
Russia, Moscow; Russia, St. Petersburg

I. D. Drozd

Shirshov Institute of Oceanology, Russian Academy of Sciences; Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Moscow State University

Email: ost.sophisticated@gmail.com
Russia, Moscow; Russia, Moscow; Russia, Moscow

D. I. Frey

Shirshov Institute of Oceanology, Russian Academy of Sciences; Marine Hydrophysical Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: ost.sophisticated@gmail.com
Russia, Moscow; Russia, Sevastopol; Russia, Dolgoprudny

References

  1. Бурков В.А. Антарктические струи // Океанология. 1994. Т. 34. № 2. С. 169–177.
  2. Кошляков М.Н., Савченко Д.С., Тараканов Р.Ю. Энергия струй Антарктического циркумполярного течения и синоптических вихрей в приповерхностном слое Южного океана // Океанология. 2019. Т. 59. № 3. С. 325–334. https://doi.org/10.31857/S0030-1574593325-334
  3. Кошляков М.Н., Репина И.А., Савченко Д.С. и др. Структура и изменчивость синоптических возмущений океанских течений в проливе Дрейка и море Скотия // Океанология. 2019. Т. 59. № 2. С. 191–200. https://doi.org/10.31857/S0030-1574592191-200
  4. Тараканов Р.Ю., Гриценко А.М. Структура фронтов в районе к югу от Африки по данным разреза SR02 в декабре 2009 г. и спутниковой альтиметрии // Исследовано в России: электрон. науч. журн. 2010. https://doi.org/10.7868/S0030157414030137
  5. Тараканов Р.Ю., Гриценко А.М. Тонкая струйная структура Антарктического циркумполярного течения к югу от Африки // Океанология. 2014. Т. 54. № 6. С. 725–736. https://doi.org/10.7868/S003015741405013X
  6. Тараканов Р.Ю., Гриценко А.М. Струи Антарктического циркумполярного течения в проливе Дрейка по данным гидрофизических разрезов 2010 и 2011 гг. // Современные проблемы термогидромеханики океана. 2017. С. 167–169. https://doi.org/10.29006/978-5-9901449-3-4-2017-1-167-169
  7. Тараканов Р.Ю., Гриценко А.М. Струи Антарктического циркумполярного течения в проливе Дрейка по данным гидрофизических разрезов // Океанология. 2018. Т. 58. № 4. С. 541–555. https://doi.org/10.1134/S003015741804010X
  8. Чурин Д.А. Структура струй Антарктического циркумполярного течения в море Скотия по данным спутниковой альтиметрии и судовым наблюдениям в 2000 и 2005 годах // Труды АтлантНИРО. 2018. Т. 2. № 1. С. 61–69.
  9. Artana C., Lellouche J.M., Park Y.H. et al. Fronts of the Malvinas Current System: surface and subsurface expressions revealed by satellite altimetry, Argo floats, and Mercator operational model outputs // Journal of Geophysical Research: Oceans. 2018. V. 123. № 8. P. 5261–5285. https://doi.org/10.1029/2018JC013887
  10. Barré N., Provost C., Renault A. et al. Fronts, meanders and eddies in Drake Passage during the ANT-XXIII/3 cruise in January–February 2006: A satellite perspective // Deep Sea Research Part II: Topical Studies in Oceanography. 2011. V. 58. № 25–26. P. 2533–2554. https://doi.org/10.1016/j.dsr2.2011.01.003
  11. Chapman C.C., Lea M.A., Meyer A. et al. Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate // Nat. Clim. Change. 2020. V. 10. P. 210–219. https://doi.org/10.1038/s41558-020-0705-4
  12. Chelton D.B., Schlax M.G., Witter D.L. et al. Geosat altimeter observations of the surface circulation of the Southern Ocean // Journal of Geophysical Research: Oceans. 1990. V. 95. № C10. P. 17 877–17 903. https://doi.org/10.1029/JC095iC10p17877
  13. Deacon G.E.R. The hydrology of the Southern Ocean // Discovery Rep. 1937. V. 15. P. 3–122.
  14. Ducet N., Le Traon P.Y., Reverdin G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2 // Journal of Geophysical Research: Oceans. 2000. V. 105. № C8. P. 19 477–19 498. https://doi.org/10.1029/2000JC900063
  15. Egbert G.D., Erofeeva S. Efficient inverse modeling of barotropic ocean tides // J. Atmos. Ocean Tech. 2002. V. 19. P. 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
  16. Fang M., Zhang J. Basin-scale features of global sea level trends revealed by altimeter data from 1993 to 2013 // Journal of Oceanography. 2015. V. 71. № 3. P. 297–310. https://doi.org/10.1007/s10872-015-0289-1
  17. Ferrari R., Artana C., Saracen M. et al. Satellite altimetry and current-meter velocities in the Malvinas Current at 41 S: Comparisons and modes of variations // Journal of Geophysical Research: Oceans. 2017. V. 122. № 12. P. 9572–9590. https://doi.org/10.1002/2017JC013340
  18. Ferrari R., Provost C., Renault A. et al. Circulation in Drake Passage revisited using new current time series and satellite altimetry: 1. The Yaghan Basin // Journal of Geophysical Research: Oceans. 2012. V. 117. № C12. https://doi.org/10.1029/2012JC008264
  19. Firing Y.L., Chereskin T.K., Mazloff M.R. Vertical structure and transport of the Antarctic Circumpolar Current in Drake Passage from direct velocity observations // Journal of Geophysical Research: Oceans. 2011. V. 116. № C8. https://doi.org/10.1029/2011JC006999
  20. Frey D.I., Krechik V.A., Gordey A.S. et al. Austral summer circulation in the Bransfield Strait based on SADCP measurements and satellite altimetry // Front. Mar. Sci. 2023. P. 10:1111541. https://doi.org/10.3389/fmars.2023.1111541
  21. Frey D.I., Piola A.R., Krechik V.A. et al. Direct measurements of the Malvinas Current velocity structure // Journal of Geophysical Research: Oceans. 2021. V. 126. № 4. V. e2020JC016727. https://doi.org/10.1029/2020JC016727
  22. Frey D.I., Piola A.R., Morozov E.G. Convergence of the Malvinas Current branches near 44° S // Deep Sea Research Part I: Oceanographic Research Papers. 2023. P. 104023. https://doi.org/10.1016/j.dsr.2023.104023
  23. Gaube P., Barceló C., McGillicuddy D.J. Jr. et al. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic // PloS one. 2017. V. 12. № 3. P. e0172839. https://doi.org/10.1371/journal.pone.0172839
  24. GEBCO Compilation Group (2021) GEBCO 2021 Grid https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f
  25. Gille S.T. Meridional displacement of the Antarctic circumpolar current // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014. V. 372. № 2019. P. 20130273.
  26. Kim Y.S., Orsi A.H. On the variability of Antarctic Circumpolar Current fronts inferred from 1992–2011 altimetry // Journal of Physical Oceanography. 2014. V. 44. № 12. P. 3054–3071. https://doi.org/10.1175/JPO-D-13-0217.1
  27. Lenn Y.D., Chereskin T.K., Sprintall J. Improving estimates of the Antarctic Circumpolar Current streamlines in Drake Passage // Journal of Physical Oceanography. 2008. V. 38. № 5. P. 1000–1010. https://doi.org/10.1175/2007JPO3834.1
  28. Matano R.P., Palma E.D. On the upwelling of downwelling currents // Journal of Physical Oceanography. 2008. V. 38. № 11. P. 2482–2500. https://doi.org/10.1175/2008JPO3783.1
  29. Morozov E.G., Frey D.I., Fofanov D.V. et al. The extreme northern jet of the Antarctic Circumpolar Current // Russian Journal of Earth Sciences. 2020. V. 20. № 5. P. 4. https://doi.org/10.2205/2020ES000717
  30. Morozov E.G., Frey D.I., Krechik V.A. et al. Multidisciplinary observations across an eddy dipole in the interaction zone between subtropical and subantarctic waters in the Southwest Atlantic // Water. 2022. V. 14. № 17. V. 2701. https://doi.org/10.3390/w14172701
  31. Morozov E.G., Spiridonov V.A., Molodtsova T.N. et al. Investigations of the ecosystem in the Atlantic sector of Antarctica (cruise 79 of the R/V Akademik Mstislav Keldysh) // Oceanology. 2020. V. 60. № 5. P. 721–723. https://doi.org/10.1134/S0001437020050161
  32. Morozov E.G., Tarakanov R.Yu., Ansorge I., Swart S. Jets and transport of the Antarctic Circumpolar Current in the Drake Passage // Fundamental and Applied Hydrophysics. 2014. V. 7. № 3. P. 23–28. – EDN TAQWLB.
  33. Morozov E.G., Tarakanov R.Y., Demidova T.A. et al. Velocity and transport of the Falkland Current at 46° S // Russian Journal of Earth Sciences. 2016. V. 16. № 6. P. 1–4. https://doi.org/10.2205/2016ES000588
  34. Nowlin W.D. Jr., Clifford M. The kinematic and thermohaline zonation of the Antarctic Circumpolar Current at Drake Passage // Journal of Marine Research. 1982. V. 40. P. 481–507.
  35. Orsi A.H., Whitworth III T., Nowlin W.D. Jr. On the meridional extent and fronts of the Antarctic Circumpolar Current // Deep Sea Research Part I: Oceanographic Research Papers. 1995. V. 42. № 5. P. 641–673. https://doi.org/10.1016/0967-0637(95)00021-W
  36. Provost C., Renault A., Barré N. et al. Two repeat crossings of Drake Passage in austral summer 2006: Short-term variations and evidence for considerable ventilation of intermediate and deep waters // Deep Sea Research Part II: Topical Studies in Oceanography. 2011. V. 58. № 25–26. P. 2555–2571. https://doi.org/10.1016/j.dsr2.2011.06.009
  37. Salyuk P.A., Mosharov S.A., Frey D.I. et al. Physical and biology features of the waters in the outer Patagonian shelf and the Malvinas Current // Water. 2022. 14 (23). https://doi.org/10.3390/w14233879
  38. Shi J.R., Talley L.D., Xie S.-P. et al. Effects of buoyancy and wind forcing on Southern Ocean climate change // Journal of Climate. 2020. V. 33. № 23. P. 10 003–10 020. https://doi.org/10.1175/JCLI-D-19-0877.1
  39. Sievers H.A., Emery W.J. Variability of the Antarctic Polar frontal zone in the Drake Passage—summer 1976–1977 // Journal of Geophysical Research: Oceans. 1978. V. 83. № C6. P. 3010–3022.
  40. Sievers H.A., Nowlin W.D. Jr. The stratification and water masses at Drake Passage // Journal of Geophysical Research: Oceans. 1984. V. 89. № C6. P. 10 489–10 514. https://doi.org/10.1029/JC089iC06p10489
  41. Sokolov S., Rintoul S.R. Structure of Southern Ocean fronts at 140° E // Journal of Marine Systems. 2002. V. 37. № 1–3. P. 151–184. https://doi.org/10.1016/S0924-7963(02)00200-2
  42. Sokolov S., Rintoul S.R. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths // Journal of Geophysical Research: Oceans. 2009. V. 114. № C11. https://doi.org/10.1029/2008JC005108
  43. Sokolov S., Rintoul S.R. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 2. Variability and relationship to sea surface height // Journal of Geophysical Research: Oceans. 2009. V. 114. № C11. https://doi.org/10.1029/2008JC005248
  44. Tarakanov R.Yu. Long-term linear meridional shift of the jet structure of the Antarctic Circumpolar Current south of Africa // Oceanology. 2021. V. 61. P. 815–829. https://doi.org/10.1134/S000143702106031X
  45. Venables H., Meredith M.P., Atkinson A. et al. Fronts and habitat zones in the Scotia Sea // Deep Sea Research Part II: Topical Studies in Oceanography. 2012. V. 59. P. 14–24. https://doi.org/10.1016/j.dsr2.2011.08.012

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (972KB)
4.

Download (2MB)
5.

Download (412KB)
6.

Download (1MB)
7.

Download (315KB)
8.

Download (429KB)
9.

Download (159KB)

Copyright (c) 2023 С.А. Остроумова, И.Д. Дрозд, Д.И. Фрей

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies