On the Mechanisms Generating the Nearshore Bars on a Sandy Coastal Slope

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study is aimed at investigation of the problem in what conditions the morphodynamic self-organizational mechanism controlling the growth of small perturbations arisen on bed could be responsible for the nearshore bars development. A simplified sediment transport model is used in which the sediment discharge is turned out directly proportional to the local bed slope. This model allows reducing the problem to an analytical solving of the diffusion equation which gives the base to predict the evolution of perturbation arisen on bed. The conclusion is argued that the favorable preconditions for the nearshore bar formation can exist in the case of onshore sediment transport associated with the dominating contribution of wave asymmetry in transport process. However under conditions of steep stormy waves the undertow is developed providing offshore sediment flux from the beach. In this case, the breaker bar is formed by two mechanisms–self-organization and convergence of opposite sediment fluxes. The results obtained are in agreement with available data and also assist to explain some properties of multiple-bar systems found out from observations.

About the authors

I. O. Leont’yev

Shirshov Institute of Oceanology RAS

Author for correspondence.
Email: igor.leontiev@gmail.com
Russia, Moscow

References

  1. Леонтьев И.О. Профиль равновесия и система подводных береговых валов // Океанология. 2004. Т. 44. № 4. С. 625–631.
  2. Леонтьев И.О. Динамика берегового профиля с подводными валами в масштабе штормового цикла // Океанология. 2020. Т. 60. № 5. С. 805–813. https://doi.org/10.31857/S0030157420050123
  3. Леонтьев И.О., Афанасьев В.В., Уба А.В. Ритмические структуры контура берега в заливе Терпения острова Сахалин // Океанология. 2019. Т. 59. № 3. С. 497–505. https://doi.org/10.31857/S0030-1574593497-505
  4. Aagaard T., Davidson-Arnott R., Greenwood B., Nielsen J. Sediment supply from shoreface to dune: linking sediment transport measurements and long-term morphological evolution // Geomorphology. 2004. V. 60. P. 205–224.
  5. Arcilla A.S., Roelvink J.A., O’Connor B.A. et al. The Delta Flume 1993 Experiment // Proc. Int. Conf. “Coastal Dynamics’94”. 1994. Barcelona. P. 488–502.
  6. Ashton A.D., Murray A.B. High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits and capes // J. of Geophys. Res. 2006. V. 111. F04012. https://doi.org/10.1029/2005JF000422
  7. Bowen A.J., Huntley D.A. Waves, long waves and nearshore topography // Marine Geol. 1984. V. 60. P. 1–13.
  8. Brinkkemper J.A., Aagaard T., de Bakker A.T.M., Ruessink B.G. Shortwave sand transport in the shallow surf zone // J. Geophys. Res. Earth Surface. 2018. V. 123. P. 1145–1159. https://doi.org/10.1029/2017JF004425
  9. Cowell P.J., Thom B.G. Morphodynamics of coastal evolution. // Coastal evolution: late quarternary shoreline morphodynamics / R.W.G. Carter, C.D. Woodroffe (Eds.). Cambridge Univ. Press, 1995. P. 33–86.
  10. Dronkers J. Dynamics of coastal systems. Advanced series on ocean engineering. V. 25. World Scientific, 2005.
  11. Eichentopf S., Caceres I., Alsina J.M. Breaker bar morphodynamics under erosive and accretive wave conditions in large-scale experiments // Coastal Eng. 2018. V. 138. P. 36–48.
  12. Falqués A., Coco G., Huntley D.A. A mechanism for the generation of wave-driven rhythmic patterns in the surf zone // J. of Geophys. Res. 2000. V. 105. № C10. P. 24 071–24 087.
  13. Falqués A., Dodd N., Garnier R. et al. Rhythmic surf-zone bars and morphodynamic self-organization // Coastal Eng. 2008. V. 55. P. 622–641.
  14. Grossmann F., Hurther D., van der Zanden J. et al. Near-bed sediment transport during offshore bar migration in large-scale experiments // J. of Geophys. Res. Oceans. 2021. V. 127. e2021JC017756. https://doi.org/10.1029/2021JC017756
  15. Holman R.A., Bowen A.J. Bars, bumps and holes: models for the generation of complex beach topography // J. of Geophys. Res. 1982. V. 87. № C1. P. 457–468.
  16. Larson M., Kraus N.C. SBEACH: numerical model for simulating storm-induced beach change. Tech. Rep. CERC-89-9. 1989. US Army Eng. Waterw. Exp. Station. Coastal Eng. Res. Center.
  17. Leont’yev I.O. Randomly breaking waves and surf-zone dynamics // Coastal Engineering. 1988. V. 12. P. 83–103.
  18. Miller C.D., Barcilon A. Hydrodynamic instability in the surf zone as a mechanism for the formation of horizontal gyres // J. Geophys. Res. 1978. V. 83. № C8. P. 4107–4116.
  19. Ribas F., Falqués A., Plant N., Hulscher S. Self-organization in surf zone morphodynamics: alongshore uniform instabilities // Proc. Int. Conf. “Coastal Dynamics’01”. 2001. Sydney. P. 1068–1077.
  20. Ruessink B.G., Terwindt J.H.J. The behavior of nearshore bars on the time scale of years: a conceptual model // Marine Geol. 2000. V. 163. P. 289–302.
  21. Van Rijn L.C., Ruessink B.G., Mulder J.P.M. Summary of project results // Coast3D–Egmond. The behavior of a straight sandy coast on the time scale of storms and seasons. Amsterdam: Aqua Publ., 2002.
  22. Wijnberg K.M., Kroon A. Barred beaches // Geomorphology. 2002. V. 48. P. 103–120.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (94KB)
3.

Download (56KB)
4.

Download (42KB)
5.

Download (47KB)

Copyright (c) 2023 И.О. Леонтьев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies