Bioindication of Bottom Sediments of the Gulf of Finland by the Composition of Meiobenthos in Combination with Biotesting and Chemical Analysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The question of the possibility of using meiobenthos to monitor the state of bottom sediments (BS) in the Baltic Sea, where bottom macrofauna are unstable due to hypoxia, is of interest. The parameters of meiobenthos and the physicochemical characteristics of BS and bottom water were studied, and the toxicity of BS was determined by the survival of the amphipod Gmelinoides fasciatus in 10-day tests for 11 stations in the brackish part of the Gulf of Finland (depths of 10–52 m). Principal component analysis revealed two factors explaining 67% of the variability of the variables, and groups of stations similar in terms of conditions. Factor 1 combined nine related variables (depth, metal concentrations and fraction of sand in BS, ratio of nematodes and copepods (N/C index) and survival of amphipods), and factor 2 combined four variables (organic matter and polyaromatic hydrocarbons in BS, phosphates in water and the number of meiobenthos). Thus, bioindication of the environment by meiobenthos is promising, but requires an integrated approach to be applied in monitoring.

About the authors

N. A. Berezina

Zoological Institute of the Russian Academy of Science

Author for correspondence.
Email: nadezhda.berezina@zin.ru
Russia, St. Petersburg

V. A. Petukhov

Zoological Institute of the Russian Academy of Science

Email: nadezhda.berezina@zin.ru
Russia, St. Petersburg

References

  1. Березина Н.А., Максимов А.А. Количественные характеристики и пищевые предпочтения бокоплавов (Crustacea: Amphipoda) в восточной части Финского залива Балтийского моря // Ж. Сиб. Фед. Ун-та. Биология. 2016. № 4. С. 409–426.
  2. Воробьева Л.В., Кулакова И.И. Мейобентос в системе биологического мониторинга контактных зон моря // Сист. контроля окр. среды. 2013. № 19. С. 262–267.
  3. Кочешкова О.В., Ежова Е.Е., Ланге Е.К. Особенности питания двух массовых видов полихет Вислинского залива Балтийского моря // Морской Экологический журнал. 2012. Т. 11. № 2. С. 45–51.
  4. Курашов Е.А. Мейобентос как компонент озерной экосистемы. СПб: “Алга-Фонд”, 1994. 224 с.
  5. Курашов Е.А., Дудакова Д.С. Мейобентос литоральной зоны Ладожского озера и его использование для диагностики состояния среды // Российский журнал прикладной экологии. 2018. № 4 (16). С. 22–29.
  6. Максимов А.А. Влияние климатических факторов на динамику макрозообентоса // Экосистема эстуария реки Невы: биологическое разнообразие и экологические проблемы. А.Ф. Алимов и С.М. Голубков (ред.). Москва: Товарищество научных изданий КМК, 2008. С. 346–355.
  7. Максимов А.А., Петухов В.А. Роль макро- и мейобентоса в донных сообществах вершины Финского залива // Тр. Зоол. Ин-та РАН. 2011. Т. 315. № 3. С. 289–310.
  8. Мокиевский В.О. Экология морского мейобентоса. Москва: Товарищество научных изданий КМК, 2009. 286 с.
  9. Мокиевский В.О., Воробьева Л.В., Гарлицкая Л.А. и др. Многолетние изменения в мейобентосе Восточной части Черного моря // Океанология. 2010. Т. 50. № 6. С. 994–1001.
  10. Мокиевский В.О., Удалов А. А., Азовский А. И. О количественном распределении мейобентоса глубоководных зон в Мировом океане // Океанология. 2007. Т. 47. № 6. С. 857–874.
  11. Рыбалко А.Е., Федорова Н.К., Максимов А.А. Влияние гидротехнических работ на формирование геохимической структуры донных осадков (на примере восточной части Финского залива в 2006–2008 гг.) // Геология морей и океанов: Материалы XVIII Международной научной конференции (Школы) по морской геологии. Т. 4. А.П. Лисицын (ред.). Москва: ГЕОС, 2009. С. 147–149.
  12. Alekseeva T.N., Politova N.V., Kozina N.V. Grain size distribution of the surface layer of bottom sediments in the Barents Sea // Oceanology. 2020. Vol. 60. № 6. P. 803–816.
  13. Amjad S., Gray J.S. Use of the Nematode-Copepod Ratio as an index of organic pollution // Mar. Pollut. Bull. 1983. V. 14. P. 178–181.
  14. Arya D.B., Vincent S.G.T., Godson P.S. Benthic biotopes: abiotic and biotic factors in the sediment // Ecology and Biodiversity of Benthos. Elsevier, 2022. P. 21–31.
  15. Bat L. A review of sediment toxicity bioassays using the amphipods and polychaetes // Turk. J. Fish. Aquat. Sci. 2005. V. 5. P. 119–139.
  16. Berezina N.A., Gubelit Y.I., Polyak Y.M. et al. An integrated approach to the assessment of the eastern Gulf of Finland health: A case study of coastal habitats // J. Marine Syst. 2017. V. 171. 159–171.
  17. Berezina N., Strode E., Lehtonen K. et al. Sediment quality assessment using Gmelinoides fasciatus and Monoporeia affinis (Amphipoda, Gammaridea) in the northeastern Baltic Sea // Crustaceana. 2013. V. 86. № 7–8. P. 780–801.
  18. Chapman P.A. Decision-making framework for sediment assessment developed for the Great Lakes // Human and Ecological Risk Assessment. 2002. V. 8. № 7. P. 1641–1655.
  19. Coull B.C., Hicks G.R.F., Wells J.B.J. Nematode/Copepod ratios for monitoring pollution: A rebuttal // Mar. Pollut. Bull. 1981. V. 12. P. 378–381.
  20. De-La-Ossa-Carretero J.A., Del-Pilar-Ruso Y., Gimenez-Casalduero F. et al. Sensitivity of amphipods to sewage pollution // Estuarine, Coastal and Shelf Science. 2012. V. 96. P.129–138.
  21. Fadeeva N.P., Bezverbnaja I.P., Tazaki K.et al. Composition and structure of marine benthic community regarding conditions of chronic harbour pollution // Ocean. Polar Res. 2003. V. 25. № 1. P. 21–30.
  22. Fadeeva N.P., Davydkova I.L. Some aspects of ecology and life history of Oncholaimium ramosum (Nematoda: Oncholaimidae) in polluted cove from the Sea of Japan // Russ. J. Nematol. 2005. V. 13. № 2. P. 101–110.
  23. Galope-Bacaltos D.G. Composition and spatial distribution of infauna in a river estuary affected by fishpond effluents // Mar. Pollut. Bull. 2002. V. 44. P. 816–819.
  24. Gee J.M., Warwick R.M., Schaanning M.et al. Effects of oganic enrichment on meiofaunal abundance and community structure in sublittoral soft sediments // J. Exp. Mar. Biol. Ecol. 1985. V. 91. P. 247–262.
  25. Guerra-García J.M., Baeza-Rojano E., Cabezas M.P. et al. The amphipods Caprella penantis and Hyale schmidtii as biomonitors of trace metal contamination in intertidal ecosystems of Algeciras Bay, Southern Spain // Mar. Pollut. Bull. 2009. V. 58. № 5. P. 783–786.
  26. Jacobson T., Sundelin B., Yang G., Ford A. Low dose TBT exposure decreases amphipod immunocompetence and reproductive fitness // Aquatic toxicology. 2010. V. 101. P. 72–77.
  27. Jeshma P., Suresh Gandhi M., Rajeshwara Rao N. Benthic foraminifera and geochemical assessment of Puravadaiyanar and Vettar estuaries, Karaikal, south east coast of India – Implication for pollution monitoring studies // Region. Stud. Mar. Sci. 2016. V. 9. P. 76–88.
  28. Kalinkina N.M., Berezina N.A., Sidorova A.I. et al. Toxicity bioassay of bottom sediments in large water bodies in Northwestern Russia with the use of crustaceans // Water Resources. 2013. V. 40. P. 657–666.
  29. Kim H.G., Song S.J., Bae H. et al. Natural and anthropogenic impacts on long-term meiobenthic communities in two contrasting nearshore habitats // Environ Int. 2020. V. 134. 105200.
  30. Lee M., Correa J., Castilla J. An assessment of the potential use of the Nematode to Copepod Ratio in the monitoring of metals pollution. The Chañaral case // Mar. Pollut. Bull. 200142. 696–701.
  31. Marin V., Moreno M., Vassallo P. et al. Development of a multistep indicator-based approach (MIBA) for the assessment of environmental quality of harbours // ICES J. Mar. Sci. 2008. V. 65. Iss. 8. P. 1436–1441.
  32. Maximov A. The long-term dynamics and current distribution of macrozoobenthos communities in the Eastern Gulf of Finland, Baltic Sea // Russ. J. Mar. Biol. 2015. V. 41. P. 300–310.
  33. Prato E., Di Leo A., Biandolino F., Cardellicchio N. Sediment toxicity tests using two species of marine amphipods: Gammarus aequicauda and Corophium insidiosum // Bull. Environ. Contam. Toxicol. 2006. V. 76. № 4. P. 629–636.
  34. Raffaelli D. The behaviour of the Nematode/Copepod ratio in organic pollution studies // Marine Environmental Research. 1987. V. 23. P. 135–152.
  35. Raffaelli D., Mason C.F. Pollution monitoring with meiofauna, using the ratio of nematodes to copepods // Mar. Pollut. Bull. 1981. V. 12. P. 158–163.
  36. Rao M.N., Gaikwad S., Ram A. et al. Effects of sedimentary heavy metals on meiobenthic community in tropical estuaries along eastern Arabian Sea // Environ. Geochem. Health. 2022. https://doi.org/10.1007/s10653-022-01239-3
  37. Riera R., Sanchez-Jerez P., Rodríguez M. et al. Long-term monitoring of fish farms: application of Nematode/Copepod index to oligotrophic conditions // Mar. Pollut. Bull. 2012. V. 64. № 4. P. 844–850.
  38. Rosenberg R., Blomqvist M., Nilsson H.C. et al. Marine quality assessment by use of benthic species-abundance distributions: a proposed new protocol within European Union Water Framework Directive // Mar. Pollut. Bull. 2004. V. 49. P. 728–739.
  39. Rubal M., Veiga P., Besteiro C. 2009. Nematode/copepod index: Importance of sedimentary parameters, sampling methodology and baseline values // Thalassas. V. 25. P. 9–18.
  40. Shiels G.M., Anderson K.J. Pollution monitoring using the Nematode/Copepod ratio. A practical application // Mar. Pollut. Bull. 1985. V. 16. N 2. P. 62–68.
  41. Sciberras M., Menechella A., Rucci K. et al. Nematode/copepod ratio and nematode and copepod abundances as bioindicators of pollution: a meta-analysis. Ecologia Austral. 2022. V. 32. P. 516–525.
  42. Stark J.S., Mohammad M., McMinn A., Ingels J. The effects of hydrocarbons on meiofauna in marine sediments in Antarctic // J. Exp. Mar. Biol. Ecol. 2017. V. 496. P. 56–73.
  43. Strode E., Jansons M., Purina I. et al. Sediment quality assessment using survival and embryo malformation tests in amphipod crustaceans: The Gulf of Riga, Baltic Sea as case study // J. Mar. Syst. 2017. V. 172. P. 93–103.
  44. Warwick R.M. The nematode/copepod ratio and its use in pollution ecology // Mar. Pollut. Bull. 1981. V. 12. № 10. P. 329–333.
  45. Wojtasik B. 2009. Evaluation of the stage of development of the littoral of Czorsztyński and Sromowiecki reservoirs (Pieniny Mountains, Poland) on the basis of analyses of meiobenthos assemblages // Ecohydrol. Hydrobiol. V. 9. № 2–4. P. 149–157.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (708KB)
3.

Download (64KB)
4.

Download (171KB)

Copyright (c) 2023 Н.А. Березина, В.А. Петухов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies