Hydrodecyclization of Naphthenes over Iridium-Containing Zeolite Catalysts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study investigates the hydrodecyclization of decalin over zeolite catalysts. The synthesized catalysts were characterized using a combination of physicochemical methods, such as TEM, SEM, low-temperature nitrogen adsorption/desorption, and XPS. The zeolite structure was found to have a major effect on the hydrodecyclization process. This process involves the isomerization of one ring followed by the opening of that ring. Incorporating iridium into the catalysts promoted the production of branched hydrocarbons. When testing the process in the temperature range of 300–400°C and at an initial hydrogen pressure of 50 atm, the Ir/BEA catalyst exhibited the highest activity: at 350°C the decyclization of decalin exceeded 50%.

About the authors

L. G. Mamyan

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

A. A. Sadovnikov

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

O. V. Arapova

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

A. L. Maksimov

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

E. R. Naranov

A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Author for correspondence.
Email: naranov@ips.ac.ru
119991, Moscow, Russia

References

  1. Yadav V.G., Yadav G.D., Patankar S.C. The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment // Clean Technol. Environ. Policy. 2020. V. 22. P. 1757-1774. https://doi.org/10.1007/s10098-020-01945-5
  2. Jampaiah D., Murzin D.Y., Lee A.F., Schaller D., Bhargava S.K., Tabulo B., Wilson K. Catalytic selective ring opening of polyaromatics for cleaner transportation fuels // Energy Environ. Sci. 2022. V. 15. № 5. P. 1760-1804. https://doi.org/10.1039/D1EE02363B
  3. Naranov E.R., Sadovnikov A.A., Arapova O.V., Bugaev A.L., Usoltsev O.A., Gorbunov D.N., Russo V., Murzin D.U., Maximov A.L. Mechanistic insights on Ru nanoparticle in situ formation during hydrodeoxygenation of lignin-derived substances to hydrocarbons // Catal. Sci. Technol. 2023. V. 13. № 5. P. 1571-1583. https://doi.org/10.1039/D2CY01127A
  4. Широкопояс С.И., Баранова С.В., Максимов А.Л., Кардашев С.В., Куликов А.Б., Наранов Е.Р., Винокуров В.А., Лысенко С.В., Караханов Э.А. Гидрирование ароматических углеводородов в присутствии дибензотиофена на платино-паладиевых катализаторах на основе алюмосиликатов // Нефтехимия. 2014. Т. 54. № 2. С. 95-100. https://doi.org/10.7868/S0028242114020105
  5. Shirokopoyas S.I., Baranova S.V., Maksimov A.L., Kardashev S.V., Kulikov A.B., Naranov E.R., Vinokurov V.A., Lysensko S.V., Karakhanov E.A. Hydrogenation of aromatic hydrocarbons in the presence of dibenzothiophene over platinum-palladium catalysts based on Al-SBA-15 aluminosilicates // Petrol. Chemistry. 2014. V. 54. P. 94-99. https://doi.org/10.1134/S0965544114020108.
  6. Naranov E., Sadovnikov A., Arapova O., Kuchinskaya T., Usoltsev O., Bugaev A., Janssens K., De Vos D., Maximov A. The in-situ formation of supported hydrous ruthenium oxide in aqueous phase during HDO of lignin-derived fractions // Appl. Catal. B. 2023. V. 334. https://doi.org/10.1016/j.apcatb.2023.122861
  7. Naranov E.R., Sadovnikov A.A., Bugaev A.L., Shavaleev D.A., Maximov A.L. A stepwise fabrication of MFI nanosheets in accelerated mode // Catal. Today. 2021. V. 378. P. 149-157. https://doi.org/10.1016/j.cattod.2021.06.011
  8. Наранов Е.Р., Дементьев К.И., Герзелиев И.М., Колесниченко Н.В., Ролдугина Е.А., Максимов А.Л. Роль цеолитного катализа в современной нефтепереработке: вклад отечественных разработок // Современные молекулярные сита. 2019. Т. 1. № 1.
  9. Naranov E.R., Dement'ev K.I., Gerzeliev I.M., Kolesnichenko N.V., Roldugina E.A., Maksimov A.L. The role of zeolite catalysis in modern petroleum refining: contribution from domestic technologies // Petrol. Chemistry. 2019. V. 59. P. 247-261. https://doi.org/10.1134/S0965544119030101
  10. Naranov E.R., Maximov A.L. Selective conversion of aromatics into cis-isomers of naphthenes using Ru catalysts based on the supports of different nature // Catal. Today. 2019. V. 329. P. 94-101. https://doi.org/10.1016/j.cattod.2018.10.068
  11. Голубев О.В., Егазарьянц С.В., Матевосян Д.В., Наранов Е.Р., Максимов А.Л., Караханов Э.А. Разработка состава катализаторов защитного слоя для удаления соединений хлора из дизельных фракций // Журн. прикл. химии. 2018. Т. 91. № 12. С. 1778-1783. https://doi.org/10.1134/S0044461818120125
  12. Golubev O.V., Egazar'yants S.V., Matevosyan D.V., Naranov E.R., Maksimov A.L., Karakhanov E.A. Development of protective-layer catalysts for removal of chlorine compounds from diesel fractions // Russ. J. Appl. Chem. 2018. V. 91 P. 2040-2045. https://doi.org/10.1134/S1070427218120169.
  13. Pérot G. Hydrotreating catalysts containing zeolites and related materials-mechanistic aspects related to deep desulfurization // Catal. Today. 2003. V. 86. № 1-4. P. 111-128. https://doi.org/10.1016/S0920-5861(03)00407-3
  14. Shimada H., Yoshitomi S., Sato T., Matsubayashi N., Imamura M., Yoshimura Y., Nishijima A. Dual-functional Ni-Mo sulfide catalysts on zeolite-alumina supports for hydrotreating and hydrocracking of heavy oils // Stud. Surf. Sci. Catal. 1997. V. 106. P. 115-128. https://doi.org/10.1016/S0167-2991(97)80010-9
  15. Sundaramurthy V., Eswaramoorthi I., Dalai A.K., Adjaye J. Hydrotreating of gas oil on SBA-15 supported NiMo catalysts // Microporous Mesoporous Mater. 2008. V. 111. № 1-3. P. 560-568. https://doi.org/10.1016/j.micromeso.2007.08.037
  16. Dufresne P. Hydroprocessing catalysts regeneration and recycling // Appl. Catal. A: Gen. 2007. V. 322. P. 67-75. https://doi.org/10.1016/j.apcata.2007.01.013
  17. Aho A., Roggan S., Simakova O.A., Salmi T., Murzin D.Y. Structure sensitivity in catalytic hydrogenation of glucose over ruthenium // Catal. Today. 2015. V. 241. P. 195-199. https://doi.org/10.1016/j.cattod.2013.12.031
  18. Calemma V., Giardino R., Ferrari M. Upgrading of LCO by partial hydrogenation of aromatics and ring opening of naphthenes over bi-functional catalysts // Fuel Process. Technol. 2010. V. 91. № 7. P. 770-776. https://doi.org/10.1016/j.fuproc.2010.02.012
  19. Bjelić A., Grilc M., Huš M., Likozar B. Hydrogenation and hydrodeoxygenation of aromatic lignin monomers over Cu/C, Ni/C, Pd/C, Pt/C, Rh/C and Ru/C catalysts: mechanisms, reaction micro-kinetic modelling and quantitative structure-activity relationships // Chem. Eng. J. 2019. V. 359. P. 305-320. https://doi.org/10.1016/j.cej.2018.11.107
  20. He T., Wang Y., Miao P., Li J., Wu J., Fang Y. Hydrogenation of naphthalene over noble metal supported on mesoporous zeolite in the absence and presence of sulfur // Fuel. 2013. V. 106. P. 365-371. https://doi.org/10.1016/j.fuel.2012.12.025
  21. Weitkamp J. Catalytic hydrocracking-mechanisms and versatility of the process // ChemCatChem. 2012. V. 4. № 3. P. 292-306. https://doi.org/10.1002/cctc.201100315
  22. Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel // Catal. Today. 2003. V. 86. P. 211-263. https://doi.org/10.1016/S0920-5861(03)00412-7
  23. Topsøe H., Clausen B.S., Massoth F.E. Catalysis: Science and Technology. Springer Berlin, Heidelberg, 1996. P. 1-269. https://doi.org/10.1007/978-3-642-61040-0_1
  24. Du H., Fairbridge C., Yang H., Ring Z. The chemistry of selective ring-opening catalysts // Appl. Catal. A Gen. 2005. V. 294. P. 1-21. https://doi.org/10.1016/j.apcata.2005.06.033
  25. Zhang H., Meng X., Li Y., Lin Y.S. MCM-41 Overgrown on Y composite zeolite as support of Pd-Pt catalyst for hydrogenation of polyaromatic compounds // Ind. Eng. Chem. Res. 2007. V. 46. P. 4186-4192. https://doi.org/10.1021/ie061138e
  26. Fu D., van der Heijden O., Stanciakova K., Schmidt J.E., Weckhuysen B.M. Disentangling reaction processes of zeolites within single-oriented channels // Angew. Chem. Int. Ed. 2020. V. 59. № 36. P. 15502-15506. https://doi.org/10.1002/anie.201916596
  27. Song C., Ma X. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization // Appl. Catal. B. 2003. V. 41. № 1-2. P. 207-238. https://doi.org/10.1016/S0926-3373(02)00212-6
  28. Escalona G., Rai A., Betancourt P., Sinha A.K. Selective poly-aromatics saturation and ring opening during hydroprocessing of light cycle oil over sulfided Ni-Mo/SiO2-Al2O3 catalyst // Fuel. 2018. V. 219. P. 270-278. https://doi.org/10.1016/j.fuel.2018.01.134
  29. Santana R., Do P., Santikunaporn M., Alvarez W., Taylor J., Sughrue E., Resasco D. Evaluation of different reaction strategies for the improvement of cetane number in diesel fuels // Fuel. 2006. V. 85. № 5-6. P. 643-656. https://doi.org/10.1016/j.fuel.2005.08.028
  30. Jacquin M., Jones D.J., Rozière J., López A.J., Rodríguez-Castellón E., J. Trejo Menayo J.M., Lenarda M., Storaro L., Vaccari A., Albertazzi S.J. Cetane improvement of diesel with a novel bimetallic catalyst // J. Catal. 2004. V. 228. № 2. P. 447-459. https://doi.org/10.1016/j.jcat.2004.09.017

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies