Hydrogenation of Light Cycle Oil to Produce Components of Winter and Arctic Diesel Fuels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study proposed and experimentally investigated a novel approach to hydrogenation of light cycle oil (LCO) into components of winter and arctic diesel fuels (DF) environmentally classified as K5 as per the Technical Regulation of the Customs Union (TR CU) 013/2011 “On the requirements for automotive and aviation gasoline, diesel and marine fuels, jet fuels, and heating oils”. The process design involves atmospheric distillation of LCO with EBP 300˚C followed by hydrotreating. Hydrogenates with low concentrations of total sulfur (<10 mg/kg) and arenes (28.6–38.0 wt %) and adequate low-temperature properties (CFPP≤–43˚C) were produced. An assessment of the physicochemical properties of the hydrogenates against applicable regulations for DF properties suggested that these hydrogenates can be effectively used as components of winter and arctic fuels by blending them into hydroisomerization diesel fractions (HIDF) and winter diesel fuels (WDF). An analysis of the main quality characteristics confirmed the feasibility of blending the LCO-derived hydrogenates into winter and arctic diesel fuels. Using GC×GC/MS examination, correlations were found between the hydrogenation process conditions, the physicochemical properties of the hydrogenates, and their detailed hydrocarbon compositions.

About the authors

M. U. Sultanova

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: sultanova@ips.ac.ru
119991, Moscow, Russia

V. O. Samoylov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

A. F. Ziniatullina

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

A. Sh. Utepbergenova

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

D. N. Ramazanov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

M. I. Knyazeva

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Author for correspondence.
Email: petrochem@ips.ac.ru
119991, Moscow, Russia

References

  1. Указ Президента Российской Федерации от 26.10.2020 Г. № 645 О Стратегии развития Арктической Зоны Российской Федерации и обеспечения национальной безопасности на период до 2035 года. 2020. С. 35.
  2. Bogdanov I., Altynov A., Kirgina M. Hydrogen-free upgrading on ZSM-5 type zeolite catalyst - efficient way to obtain low-freezing diesel fuel // South African J Chem Eng. 2022. V. 41. N March. P. 1-9. https://doi.org/10.1016/j.sajce.2022.03.010
  3. ГОСТ Р 55475-2013 Топливо дизельное зимнее и арктическое депарафинированное. Технические Условия 2013. С. 12.
  4. Лебедев Б.Л., Афанасьев И.П., Ишмурзин А.В., Талаев С.Ю., Штеба В.Э., Камешков А.В., Домнин П.И. Производство зимнего дизельного топлива в России // Нефтепеработка и нефтехимия. 2015. С. 19-27.
  5. Kirgina M., Bogdanov I., Belinskaya N., Altynov A., Morozova Y. Expansion of the feedstock base for the production of diesel fuel by involving the heavy fractions and cold flow improvers // Oil Gas Sci Technol. 2020. V. 75. № 31. P. 8. https://doi.org/10.2516/ogst/2020026
  6. Иванова Л.В., Кошелев В.Н., Буров Е.А. Влияние группового углеводородного состава дизельных топлив на их эксплуатационные свойства // Нефтехимия. 2014. Т. 54. № 6. С. 478-484. https://doi.org/10.7868/s0028242114060069
  7. Ivanova L.V., Koshelev V.N., Burov E.A. // Petrol. Chemistry. 2014. V. 54. № 6. P. 466-472. https://doi.org/10.1134/S0965544114060061.
  8. Tomášek J., Matějovský L., Lamblová M.B.J. Properties and composition of products from hydrotreating of straight-run gas oil and its mixtures with light cycle oil over sulfidic Ni-Mo/Al2O3 catalyst // ACS Omega. 2020. V. 5. № 43. P. 27922-27932. https://doi.org/10.1021/acsomega.0c03259
  9. Осипенко Д.Ф., Грохотова Е.В., Сидоров С.М., Фатхудинова Э.Н. Улучшение низкотемпературных свойств дизельного топлива // Нефтегазовое дело. 2005. С. 110-124. https://doi.org/10.1016/B0-12-369400-0/00320-3
  10. Богомолова Т.С., Смирнова М.Ю., Климов О.В., Носков А.С. Способ получения низкозастывающего дизельного топлива // Патент РФ № 2 773 434. 2022.
  11. Томина Н.Н., Максимов Н.М., Солманов П.С., Занозина И.И., Пимерзин А.А. Гидроочистка вакуумного газойля на модифицированных Ni-Mo/Al2O3-катализаторах // Нефтехимия. 2016. Т. 56. № 5. С. 527-534. https://doi.org/10.7868/s002824211605018x
  12. Tomina N.N., Maksimov N.M., Solmanov P.S., Zanozina I.I., Pimerzin A.A. // Petrol. Chemistry. 2016. V. 56. № 8. P. 753-760. https://doi.org/10.1134/S096554411608017X.
  13. Зуйков А.В., Чернышева Е.А., Сидоров Ю.В., Хавкин В.А., Гуляева Л.А. Особенности производства малосернистого дизельного топлива с низким содержанием полициклических ароматических углеводородов // Нефтепереработка и Нефтехимия. 2013. № 1. С. 11-15.
  14. Якупов И.Р., Юрченко В.В., Ахметов А.В., Имашева М.У., Ахметов А.Ф. Оценка дистиллятов легкого газойля каталитического крекинга как сырья для установки гидроочискти дизельных фракций // Нефтегазовое дело. 2014. № 5. С. 209-222.
  15. Yakupov I.R., Yurchenko V.V., Akhmetov A.V., Imasheva M.U., Akhmetov A.F. Qualification of light cycle gas oil fractions as raw material of diesel oil cut hydrotreating unit // SOCAR Proceedings. 2015. № 2. P. 68-72. https://doi.org/10.5510/OGP20150200244
  16. Багрий Е.И., Цодиков М.В. Гидрирование аценафтена и флуорена в проточной системе на промышленных алюмооксидных катализаторах // Нефтехимия. 2014. Т. 54. № 2. С. 101-105 https://doi.org/10.7868/s0028242114020026
  17. Bagriy E.I., Tsodikov M.V. // Petrol. Chemistry. 2014. V. 54. № 2. P. 101-104. https://doi.org/10.1134/S0965544114020029.
  18. Atsushi I., Dumeignil Fr., Jeayoung L., Mitsuhashi K., Qian Ei.W., Kabe T. Hydrodesulfurization of sulfur-containing polyaromatic compounds in light gas oil using noble metal catalysts // Appl Catal A Gen. 2005. V. 289. № 2. P. 163-173. https://doi.org/10.1016/j.apcata.2005.04.056
  19. Tao X., Zhou Y., Wei Q., Ding S., Zhou W., Liu T. Inhibiting effects of nitrogen compounds on deep hydrodesulfurization of straight-run gas oil over a NiW/Al2O3 catalyst // Fuel. 2017. V. 188. P. 401-407. https://doi.org/10.1016/j.fuel.2016.09.055

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies