Analysis of the Tomato Aspermy Virus Complete Genomes Suggests Reassortment in Russian Isolates from Chrysanthemum

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Tomato aspermy virus (TAV, genus Cucumovirus from the family Bromoviridae) is one of the most common and harmful chrysanthemum viruses, causing severe flower distortion, size reduction and color breaking. Metatranscriptome sequencing of chrysanthemum plants of the Ribonette and Golden Standard cultivars from the collection of the Nikita Botanical Garden (Yalta, Republic of Crimea) generated TAV-related reads. The complete genomes of two Russian isolates of the virus were assembled from the reads obtained. This is the first report of full-length TAV genomes from Russia. Typically of cucumoviruses, the segmented TAV genome is represented by three single-stranded positive-sense linear RNA molecules with a length of 3412 (RNA1), 3097 (RNA2) and 2219 (RNA3) nucleotides. Five open reading frames (ORF) have been identified that encode replicase (ORF1), RNA-dependent RNA polymerase (ORF2a), silencing suppressor protein (OFR2b), movement protein (OFR3a) and the virus coat protein (ORF3b). The identity of the TAV genomes from the two chrysanthemum cultivars was 99.8% for all three viral RNAs, and with other TAV isolates from Genbank – 97.5–99.7 (RNA1), 93.8–99.8 (RNA2), and 89.3–99.3% (RNA3). Phylogenetic analysis showed that RNA1 and RNA3 of the Russian isolates were assigned to heterogeneous groups of TAV isolates found on various plant species in different regions of the world. At the same time, RNA2 clearly clustered with tomato isolates SKO20ST2 from Slovenia and PV-0220 from Bulgaria and, to a lesser extent, with the Iranian isolate Ker.Mah.P from petunia and the Chinese isolate Henan from chrysanthemum. The incongruence of phylogenetic trees reconstructed from different segments of the viral genome suggests pseudo-recombination (reassortment) in the Russian TAV isolates.

About the authors

А. А. Sheveleva

Faculty of Biology, Lomonosov Moscow State University

Email: s-chirkov1@yandex.ru
Russia, 119234, Moscow

G. S. Krasnov

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: s-chirkov1@yandex.ru
Russia, 119991, Moscow

А. V. Kudravtseva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: s-chirkov1@yandex.ru
Russia, 119991, Moscow

А. V. Snezhkina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: s-chirkov1@yandex.ru
Russia, 119991, Moscow

E. V. Bulavkina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: s-chirkov1@yandex.ru
Russia, 119991, Moscow

S. N. Chirkov

Faculty of Biology, Lomonosov Moscow State University; Kurchatov Genomic Centre of the Nikita Botanical Garden – National Scientific Center, Russian Academy of Sciences

Author for correspondence.
Email: s-chirkov1@yandex.ru
Russia, 119234, Moscow; Russia, 298648 , Yalta

References

  1. Trolinger J.C., McGovern R.J., Elmer W.H., Rechcigl N.A., Shoemaker C.M. (2018) Diseases of chrysanthemum. In: Handbook of Florists’ Crop Disease. Eds McGovern R.J., Elmer W.H. Springer International Publ. AG, 439−502.
  2. Ram R., Verma N., Singh A.K., Singh L., Hallan V., Zaidi A.A. (2005) Indexing and production of virus-free chrysanthemums. Biologia Plantarum. 49, 149−152.
  3. Mitrofanova I.V., Zakubanskiy A.V., Mitrofanova O.V. (2018) Viruses infecting main ornamental plants: an overview. Ornam. Hortic. 24, 95−102.
  4. Hollings M. (1955) Investigation of chrysanthemum viruses. I. Aspermy flower distortion. Ann. Appl. Biol. 43, 86−102.
  5. Закубанский А.В., Чирков С.Н., Митрофанова О.В., Митрофанова И.В. (2016) Вирусы некоторых ценных плодовых, эфиромасличных и декоративных культур. Бюлл. Гос. Никитского бот. сада. 121, 7–18.
  6. https://ictv.global/report/chapter/bromoviridae/bromoviridae/cucumovirus
  7. Palukaitis P., Garcia-Arenal F. (2003) Cucumoviruses. Adv. Vir. Res. 62, 241–323.
  8. Maddahian M., Massumi H., Heydarnejad J., Pour A.H., Varsani A. (2017) Characterization of Iranian tomato aspermy virus isolates with a variant 2b gene sequence. Trop. Plant Pathol. 42, 475−484.
  9. Salanki K., Balazs E., Burgyan J. (1994) Nucleotide sequence and infectious in vitro transcripts of RNA3 of tomato aspermy virus pepper isolate. Virus Res. 33, 281−289.
  10. Hollings M., Stone O.M. (1971) Tomato aspermy virus. CMI/AAB Description of Plant Viruses. 79, 1−7.
  11. Чуян А.Х., Крылов А.В. (1979) Свойства вируса аспермии томатов из хризантемы и круг его хозяев в Приморском крае. Бюлл. Гл. Ботан. Сада АН СССР. 114, 84–92.
  12. Zakubanskiy A., Mitrofanova I., Smykova N., Mitrofanova O., Chirkov S. (2021) Detection and partial molecular characterization of viruses infecting chrysanthemum in Russia. Acta Hortic. 1324, 321–327.
  13. Moreno I.M., Bernal J.J., García de Blas B., Rodriguez-Cerezo E., García-Arenal F. (1997) The expression level of the 3a movement protein determines differences in severity of symptoms between two strains of tomato aspermy cucumovirus. Mol. Plant Microbe Interact. 10, 171–179.
  14. Chirkov S.N., Sheveleva A., Snezhkina A., Kudryavtseva A., Krasnov G., Zakubanskiy A., Mitrofanova I. (2022) Highly divergent isolates of chrysanthemum virus B and chrysanthemum virus R infecting chrysanthemum in Russia. Peer J. 10, e12607.
  15. Raj S.K., Kumar S., Choudhari S. (2007) Identification of tomato aspermy virus as the cause of yellow mosaic and flower deformation of chrysanthemums in India. Australas. Plant Dis. Notes. 2, 1–2.
  16. Bolger A.M., Lohse M., Usadel B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30, 2114–2120.
  17. Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., di Palma F., Birren B.W., Nusbaum C., Lindblad-Toh K., Friedman N., Regev A. (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652.
  18. Li H., Durbin R. (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 26, 589–595.
  19. https://arxiv.org/abs/1207.3907
  20. https://github.com/lh3/wgsim
  21. Kumar S., Stecher G., Tamura K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.
  22. Martin D.P., Murrell B., Golden M., Khoosal A., Muhire B. (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003.
  23. Inoue S., Tamura M., Ugaki M., Suzuki M. (2018) Complete genome sequences of three tomato aspermy virus isolates in Japan. Genome Announc. 6, e00474-18.
  24. Raj S.K., Kumar S., Choudhari S., Verma D.K. (2009) Biological and molecular characterization of three isolates of tomato aspermy virus infecting chrysanthemums in India. J. Phytopathol. 157, 117–125.
  25. Chare E., Holmes E. (2006) A phylogenetic survey of recombination frequency in plant RNA viruses. Arch. Virol. 151, 933–946.
  26. Pita J.S., Roossink M.J. (2013) Fixation of emerging interviral recombination in cucumber mosaic virus populations. J. Virol. 87, 1264–1269.
  27. Salanki K., Carrere I., Jacquemond M., Balazs E., Tepfer M. (1997) Biological properties of pseudorecombinant and recombinant strains created with cucumber mosaic virus and tomato aspermy virus. J. Virol. 71, 3597–3602.
  28. Chen Y., Chen J., Zhang H., Tang X., Du Z. (2007) Molecular evidence and sequence analysis of a natural reassortant between cucumber mosaic virus subgroup IA and II strains. Virus Genes. 35, 405–413.
  29. Hu C.-C., Ghabrial S.A. (1998) Molecular evidence that strain BV-15 of peanut stunt cucumovirus is a reassortant between subgroup I and II strains. Phytopathology. 88, 92–97.
  30. White P.S., Morales F., Roossink M.J. (1995) Interspecific reassortment of genomic segments in the evolution of cucumoviruses. Virology. 207, 334–337.
  31. Thompson J.R., Tepfer M. (2009) The 3'-untranslated region of cucumber mosaic virus (CMV) subgroup II RNA3 arose by interspecific recombination between CMV and tomato aspermy virus. J. Gen. Virol. 90, 2293–2298.
  32. Jacquemond M. (2012) Cucumber mosaic virus. Adv. Vir. Res. 84, 439–504.
  33. Haack I., Karl E. (1986) Transmission of isolates of tomato aspermia (tomato aspermy virus) and cucumber mosaic virus (cucumber mosaic virus) by aphid species. Arch. Phytopath. Plant Protect. 22, 451−458.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (3KB)
3.

Download (3KB)
4.

Download (69KB)
5.

Download (109KB)

Copyright (c) 2023 А.А. Шевелева, Г.С. Краснов, А.В. Кудрявцева, А.В. Снежкина, Е.В. Булавкина, С.Н. Чирков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies