Sources of Hydrocarbon Gases in the Mud Volcano Kedr, Southern Basin of Lake Baikal: Results of Experimental Investigations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Outcrops of the Oligocene-Pliocene coal-bearing Tankhoi suite are traced along the southern shore of Lake Baikal and submerge under its Southern Basin, in which several hydrate-bearing zones of focused discharge of hydrocarbon fluids have been found. To test the hypothesis that coals of the Tankhoi Suite can be sources of hydrocarbon gases in these zones, we collected coal samples from the Shakhterskaya Gorka outcrop. The experiment on gas generation from the selected samples was carried out in a special autoclave at a temperature of 90°C for eight months. This paper presents the results of this study, which confirm the important role of gas generation processes from coals in the formation of fluids in the Kedr mud volcano. Further migration of gases was accompanied by biodegradation and the formation of secondary microbial methane due to CO2 reduction. This was one of the reasons for the observed carbon isotopic pattern in methane (heavier than ‒50‰ VPDB) and carbon dioxide (positive values) taken from near-surface sediments and hydrates of the Kedr mud volcano, as well as for the significant enrichment of authigenic siderites in the heavy 13C isotope.

About the authors

A. A. Krylov

Gramberg All-Russia Scientific Research Institute for Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia); Limnological Institute SB RAS; St. Petersburg State University, Institute of Earth Sciences

Author for correspondence.
Email: akrylow@gmail.com
Russia, 190121, St. Petersburg, Anglyisky prosp., 1; Russia, 664033, Irkutsk, Ulan-Batorskaya str., 3; Russia, 199034, St. Petersburg, Universitetskaya nab., 7‒9

O. M. Khlystov

Limnological Institute SB RAS

Author for correspondence.
Email: khloleg45@yandex.ru
Russia, 664033, Irkutsk, Ulan-Batorskaya str., 3

P. B. Semenov

Gramberg All-Russia Scientific Research Institute for Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia)

Author for correspondence.
Email: petborsem@gmail.com
Russia, 190121, St. Petersburg, Anglyisky prosp., 1

A. K. Sagidullin

Nikolaev Institute of Inorganic Chemistry, SB RAS

Email: petborsem@gmail.com
Russia, 630090, Novosibirsk, prosp. akad. Lavrent’eva, 3

S. A. Malyshev

Gramberg All-Russia Scientific Research Institute for Geology and Mineral Resources of the World Ocean (VNIIOkeangeologia)

Email: petborsem@gmail.com
Russia, 190121, St. Petersburg, Anglyisky prosp., 1

S. V. Bukin

Limnological Institute SB RAS

Email: petborsem@gmail.com
Russia, 664033, Irkutsk, Ulan-Batorskaya str., 3

O. N. Vidischeva

Lomonosov Moscow State University, Faculty of Geology

Email: petborsem@gmail.com
Russia, 119991, Moscow, Leninskiye Gory, GSP-1

A. Yu. Manakov

Nikolaev Institute of Inorganic Chemistry, SB RAS

Email: petborsem@gmail.com
Russia, 630090, Novosibirsk, prosp. akad. Lavrent’eva, 3

Z. R. Ismagilov

The Federal Research Center of Coal and Coal Chemistry of SB RAS; Boreskov Institute of Catalysis SB RAS

Email: petborsem@gmail.com
Russia, 650000, Kemerovo, prosp. Sovetsky, 18; Russia, 630090, Novosibirsk, prosp. akad. Lavrent’eva, 5

References

  1. Гресов А.И., Обжиров А.И., Шакиров Р.Б. Метаноресурсная база угольных бассейнов Дальнего Востока и перспективы ее промышленного освоения. Т. 1. Владивосток: Дальнаука, 2009. 247 с.
  2. Калмычков Г.В., Егоров А.В., Кузьмин М.И., Хлыстов О.М. Генетические типы метана озера Байкал // Доклады Академии Наук. 2006. Т. 411. № 5. С. 672‒675.
  3. Калмычков Г.В., Покровский Б.Г., Хачикубо А., Хлыстов О.М. Геохимические характеристики метана из осадков подводной возвышенности Посольская банка (озеро Байкал) // Литология и полез. ископаемые. 2017. № 2. С. 121‒129. https://doi.org/10.7868/S0024497X17020057
  4. Калмычков Г.В., Егоров А.В., Хачикубо А., Хлыстов О.М. Углеводородные газы подводного нефтегазового проявления Горевой Утес (оз. Байкал, Россия) // Геология и Геофизика. 2019. Т. 60. № 10. С. 1488‒1495. https://doi.org/10.15372/GiG2019110
  5. Калмычков Г.В., Hachikubo A., Покровский Б.Г. и др. Метан с аномально высокими значениями δ13С и δD из прибрежных термальных источников озера Байкал // Литология и полез. ископаемые. 2020. № 6. С. 515‒521. https://doi.org/10.31857/S0024497X20040035
  6. Крылов А.А., Хлыстов О.М., Земская Т.И. и др. Формирование аутигенных карбонатов в грязевых вулканах озера Байкал // Геохимия. 2008. № 10. С. 1051‒1062.
  7. Кулешов В.Н. Эволюция изотопных углекислотно-водных систем в литогенезе. Сообщение 2. Катагенез // Литология и полез. ископаемые. 2001. № 6. С. 610‒630.
  8. Манаков А.Ю., Хлыстов О.М., Сагидуллин А.К. и др. Структура, морфология и состав природных газовых гидратов, отобранных на грязевом вулкане Кедр-1 (оз. Байкал) // Журнал структурной химии. 2021. Т. 62. № 6. С. 958‒965. https://doi.org/10.26902/JSC_id74424
  9. Павлова О.Н., Букин С.В., Ломакина А.В. и др. Образование углеводородных газов микробным сообществом донных осадков оз. Байкал // Микробиология. 2014. Т. 83. № 6. С. 694‒702.
  10. Павлова О.Н., Ломакина А.В., Новикова А.С. и др. Термофильные бактерии в донных осадках озера Байкал, ассоциированных с разгрузкой углеводородов // Микробиология. 2019. Т. 88. № 3. С. 358‒366.
  11. Рассказов С.В., Лямина Н.А., Лузина И.В., Черняева Г.П., Чувашова И.С., Усольцева М.В. Отложения Танхойского третичного поля, Южнобайкальская впадина: стратиграфия, корреляции и структурные перестройки в Байкальском регионе // Geodynamics &Tectonophysics. 2014. Т. 5. № 4. С. 993‒1032. https://doi.org/10.5800/GT-2014-5-4-0165.
  12. Хлыстов О.М., Кононов Е.Е., Минами Х. и др. Новые данные о рельефе подводного южного склона Южно-Байкальской котловины // География и природные ресурсы. 2018. № 1. С. 59‒65. https://doi.org/10.21782/GIPR0206-1619-2018-1(59-65)
  13. Хлыстов О.М., Вайнер-Кротов А.В., Китаев А.В., Погодаева Т.В. Находки углей Танхойского поля в донных отложениях Южного Байкала // Науки о Земле и недропользование. 2021. Т. 44. № 3. С. 285–292. https://doi.org/10.21285/2686-9993-2021-44-3-285-292
  14. Abrams M.A. Significance of hydrocarbon seepage relative to petroleum generation and entrapment // Mar. Petrol. Geol. 2005. V. 22. P. 457‒477.
  15. Balabane M., Galimov E., Hermann M., Letolle R. Hydrogen and carbon isotope fractionation during experimental production of bacterial methane // Org. Geochem. 1987. V. 11. P. 115–119.
  16. Bukin S.V., Pavlova O.N., Manakov A.Y. et al. The ability of microbial community of Lake Baikal bottom sediments associated with gas discharge to carry out the transformation of organic matter under thermobaric conditions // Front. Microbiol. 2016. V. 7. P. 1‒12.
  17. Galimov E.M. Isotope organic geochemistry // Organic Geochemistry. 2006. V. 37. P. 1200‒1262.
  18. Golding S.D., Boreham C.J., Esterle J.S. Stable isotope geochemistry of coal bed and shale gas and related production waters: a review // Intern. J. Coal Geology. 2013. V. 120. P. 24‒40.
  19. Golmshtok A.Y., Duchkov A.D., Hutchinson D.R. et al. Heat flow and gas hydrates of the Baikal Rift Zone // Int. J. Earth Sci. 2000. V. 89. P. 193‒211.
  20. Granin N.G., Muyakshin S.I., Makarov M.M. et al. Estimation of methane flux from bottom sediments of Lake Baikal // Geo-Mar. Lett. 2012. V. 32. P. 427‒436.
  21. Hachikubo A., Khlystov O., Krylov A. et al. Molecular and isotopic characteristics of gas hydrate-bound hydrocarbons in southern and central Lake Baikal // Geo-Mar. Lett. V. 30. P. 321‒329. https://doi.org/10.1007/s00367-010-0203-1
  22. Hachikubo A., Minami H., Yamashita S. et al. Characteristics of hydrate-bound gas retrieved at the Kedr mud volcano (southern Lake Baikal) // Scientific Reports. 2020. V. 10. P. 1‒12. https://doi.org/10.1038/s41598-020-71410-2
  23. Hachikubo A., Minami H., Sakagami H. et al. Characteristics and varieties of gases enclathrated in natural gas hydrates retrieved at Lake Baikal // Scientific Reports. 2023. V. 13. P. 1‒10. https://doi.org/10.1038/s41598-023-31669-7
  24. Head I.M., Jones D.M., Larter S.R. Biological activity in the deep subsurface and the origin of heavy oil // Nature. 2003. V. 426. P. 344‒352.
  25. Heuer V.B., Inagaki F., Morono Yu. et al. Temperature limits to deep subseafloor life in the Nankai Trough subduction zone // Science. 2020. V. 370. P. 1230‒1234.
  26. Inagaki F., Hinrichs K.-U., Kubo Y. et al. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor // Science. 2015. V. 349. Iss. 6246. P. 420‒424.
  27. Khlystov O.M., Khabuev A.V., Minami H., Hachikubo A., Krylov A.A. Gas hydrates in Lake Baikal // Limnology Freshwater Biology. 2018. V. 1. P. 66‒70. https://doi.org/10.31951/2658-3518-A-1-66
  28. Khlystov O.M., Poort J., Mazzini A. et al. Shallow-rooted mud volcanism in Lake Baikal // Mar. Petr. Geol. 2019. V. 102. P. 580‒589.
  29. Krylov A.A., Khlystov O.M., Hachikubo A. et al. Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin // Geo-Mar. Lett. 2010. V. 30. P. 427‒437. https://doi.org/10.1007/s00367-010-0190-2
  30. Krylov A.A., Hachikubo A., Minami H. et al. Crystallization of siderites with an extremely heavy value of 13C in the mud volcano “Kedr”, Lake Baikal / Abstracts of Joint International Conference Mineral of the Ocean-9. St. Petersburg: VNIIOkeangeologia, 2018. P. 88‒89.
  31. Lomakina A.V., Mamaeva E.V., Yuri P. Galachyants Yu.P. et al. Diversity of Archaea in bottom sediments of the discharge areas with oil- and gas-bearing fluids in Lake Baikal // Geomicrobiology Journal. 2018. V. 35. Iss. 1. P. 50‒63.
  32. Lomakina A., Pogodaeva T., Kalmychkov G. et al. Diversity of NC10 Bacteria and ANME-2d Archaea in Sediments of Fault Zones at Lake Baikal // Diversity. 2020. V. 12. Iss. 1. P. 1‒19.
  33. Lloyd M.K., Trembath-Reichert E., Dawson K.S., et al. Methoxyl stable isotopic constraint on the origins and limits of coal-bed methane // Science. 2021. V. 374. P. 894‒897.
  34. Coalbed Methane: Scientific, Environmental and Economic Evaluation / Eds M. Mastalerz, M. Glikson, S.D. Golding. Dordrecht: Kluwer Academic, 1999. 592 p.
  35. Mayumi D., Mochimaru H., Tamaki H. et al. Methane production from coal by a single methanogen // Science. 2016. V. 354. P. 222‒225.
  36. Milkov A.V. Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs // Organic Geochemistry. 2011. V. 42. P. 184‒207.
  37. Milkov A.V. Secondary Microbial Gas / Ed. H. Wilkes // Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Cham: Springer Nature Switzerland AG, 2020. P. 613‒622.
  38. Milkov A.V. New approaches to distinguish shale-sourced and coal-sourced gases in petroleum systems // Organic Geochemistry. 2021. V. 158. P. 1‒14.
  39. Milkov A.V., Etiope G. Revised genetic diagrams for natural gases based on a global dataset of >20 000 samples // Organic Geochemistry. 2018. V. 125. P. 109‒120.
  40. Minami H., Hachikubo A., Yamashita S. et al. Hydrogen and oxygen isotopic anomalies in pore waters suggesting clay mineral dehydration at gas hydrate-bearing Kedr mud volcano, southern Lake Baikal Russia // Geo-Mar. Lett. 2018. V. 38. P. 403–415. https://doi.org/10.1007/s0036 7-018-0542-x.
  41. Morgunova I., Semenov P., Kursheva A. et al. Molecular Indicators of Sources and Biodegradation of Organic Matter in Sediments of Fluid Discharge Zones of Lake Baikal // Geosciences. 2022. V. 12. № 72. P. 1‒24. https://doi.org/10.3390/geosciences12020072
  42. Payne D.F., Ortoleva P.J. A model for lignin alteration – part I: a kinetic reaction-network model // Organic Geochemistry. 2001. V. 32. P. 1073‒1085.
  43. Poort J., Khlystov O.M., Naudts L. et al. Thermal anomalies associated with shallow gas hydrates in the K-2 mud volcano, Lake Baikal // Geo-Mar. Lett. 2012. V. 32. P. 407‒417.
  44. Popp B.N., Sansone F., Francis F.J., Rust T.M. Determination of concentration and carbon isotopic composition of dissolved methane in sediments and nearshore waters // Anal. Chem. 1995. V. 67. P. 405–411.
  45. Rice D.D. Composition and origins of coalbed gas / Eds B.E. Law, D.D. Rice // Hydrocarbons from coal // AAPG Studies in Geology. 1993. V. 38. P. 159‒184.
  46. Seewald J.S. Organic-inorganic interaction in petroleum-producing sedimentary basins // Nature. 2003. V. 426. P. 327‒333.
  47. Sugimoto A., Wada E. Hydrogen isotopic composition of bacterial methane: CO2/H2 reduction and acetate fermentation // Geochim. Cosmochim. Acta. 1995. V. 59. P. 1329–1337. https://doi.org/10.1016/0016-7037(95) 00047-4
  48. Tang Y., Jenden P.D., Nigrini A., Teerman S.C. Modeling Early Methane Generation in Coal // Energy & Fuels. 1996. V. 10. P. 659‒671.
  49. Whiticar M.J. Stable isotope geochemistry of coals, humic kerogens and related natural gases // Intern. J. Coal Geol. 1996. V. 32. P. 191‒215.
  50. Whiticar M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane // Chem. Geol. 1999. V. 161. P. 291–314. https://doi.org/10.1016/S0009-541(99)00092 -3
  51. Zemskaya T.I., Pogodaeva T.V., Shubenkova O.V. et al. Geochemical and microbiological characteristics of sediments near the Malenky mud volcano (Lake Baikal, Russia), with evidence of Archaea intermediate between the marine anaerobic methanotrophs ANME-2 and ANME-3 // Geo-Mar. Lett. 2010. V. 30 (3/4). P. 411–425. https://doi.org/10.1007/s00367-010-0199-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (2MB)
4.

Download (1MB)

Copyright (c) 2023 А.А. Крылов, О.М. Хлыстов, П.Б. Семёнов, А.К. Сагидуллин, С.А. Малышев, С.В. Букин, О.Н. Видищева, А.Ю. Манаков, З.Р. Исмагилов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies