Structural Heterogeneity and “Crystallinity” Indices of Natural Kaolinites

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To overcome the existing uncertainty in the interpretation of “crystallinity” indices of kaolinites, HI [Hinckley, 1963], IK [Stoch, Sikora, 1966; Stoch, 1974], QF [Range, Weiss, 1969], AGFI [Aparicio, Galán, 1999; Aparicio et al., 2006], WIRI [Chmielová, Weiss, 2002], their values obtained for a representative collection of 30 kaolinite samples were compared with the results of modeling the corresponding X-ray diffraction patterns. It is shown that all the studied samples consist of a mixture of almost defect-free high ordered HOK and defective low-ordered LOK kaolinite phases, and that there are relationships between the HOK content and the values of the “crystallinity” indices, which are described by different regression equations. The relationship is most pronounced for HOK and the Hinckley index, HI, which is described by the quadratic equation HOK (%) = 12.236 HI2 + 25.464 HI ‒ 1.2622 with the correlation factor R2 = 0.993. The resulting equations can be used to find concentrations of HOK and LOK in natural kaolinites. Comparison of structural parameters of defective kaolinites obtained by modeling of their X-ray diffraction patterns with those of Expert System [Plançon, Zacharie 1990] showed that the latter sometimes predicts: 1) single-phase highly defective kaolinites, while their diffraction pattern modeling establishes a mixture of HOK and LOK phases; and 2) in two-phase samples, the content of the low-defect phase (ldp) is greater than 100%.

About the authors

V. A. Drits

Geological Institute RAS

Author for correspondence.
Email: victor.drits@mail.ru
Russia, 119017, Moscow, Pyzhevsky lane, 7, bld. 1

B. A. Sakharov

Geological Institute RAS

Author for correspondence.
Email: sakharovba@gmail.com
Russia, 119017, Moscow, Pyzhevsky lane, 7, bld. 1

References

  1. Дриц В.А., Кашаев А.А. Рентгенографическое изучение монокристалла каолинита // Кристаллография. 1960. Т. 5. Вып. 2. С. 224. (Drits V.A., Kashaev A.A. An X-ray diffraction study of a single crystal of kaolinite // Soviet Phys. Crystallogr. 1960. V. 5. P. 207‒210).
  2. Звягин Б.Б. Электронографическое исследование структуры каолинита // Кристаллография 1960. Т. 5. Вып. 1. С. 40‒50. (Zvyagin B.B. Electron diffraction determination of the structure of kaolinite // Soviet Phys. Crystallogr. 1960. V. 5. P. 32‒41).
  3. Самотоин Н.Д. Правые и левые микрокристаллы каолинита и их распространенность в природе // ДАН. 2010. Т. 431. № 3. С. 392‒395.
  4. Самотоин Н.Д. Энантиоморфизм каолинита: проявление на уровне элементарного слоя структуры и микрокристаллов // Кристаллография. 2011. Т. 56. № 2. С. 353‒361.
  5. Самотоин Н.Д., Бортников Н.С. Картины роста минералов группы каолинита и их модели на основе регулярного чередования энантиоморфных слоев // Кристаллография. 2011. Т. 59. № 4. С. 657‒670.
  6. Aparicio P., Galán E. Mineralogical interference on kaolinite crystallinity index measurements. // Clays Clay Miner. 1999. V. 47. P. 12–27.
  7. Aparicio P., Ferrell R., Galán E. A new kaolinite order index based on XRD profile fitting // Clay Minerals. 2006. V. 41. P. 811–817.
  8. Bailey S.W. Polytypism of 1:1 layer silicates / Hydrous Phyllosilicates (Exclusive of Micas) / Ed. S.W. Bailey // Reviews in Mineralogy. Mineralogical Society of America, Chantilly, Virginia, USA. 1988. V. 19. P. 9‒27.
  9. Bailey S.W. Kaolin Genesis and Utilization (a collection of papers presented at the Keller ’90 kaolin symposium) // The Clay Minerals Society, Boulder, Colorado / Eds H.H. Murray, W.M. Bundy, C.C. Harvey. 1993. P. 25–42.
  10. Bish D.L., von Dreele R.B. Rietveld refinement of non-hydrogen atomic positions in kaolinite. // Clays and Clay Miner. 1989. V. 37. P. 289–296.
  11. Bookin A.S., Drits V.A., Plançon A., Tchoubar C. Stacking faults in kaolin-group minerals in the light of real structural features // Clays and Clay Miner. 1989. V. 37. P. 297–307.
  12. Brindley G.W., Robinson K. The structure of kaolinite // Mineralogical Magazine. 1946. V. 27. P. 242–253.
  13. Brindley G.W., Kao C.C., Harrison J.L., Lipsicas M., Raythath-a R. Relation between structural disorder and other characteristics of kaolinites and dickites // Clays and Clay Miner. 1986. V. 34. P. 239–249.
  14. Chmielová M., Weiss Z. Determination of structural disorder degree using an XRD profile fitting procedure. Application to Czech kaolins // Applied Clay Science. 2002. V. 22. P. 65–74.
  15. Drits V.A., Zviagina B.B., Sakharov B.A., Dorzhieva O.V., Savichev A.T. New insight into the relationships between structural and FTIR spectroscopic features of kaolinites // Clays and Clay Miner. 2021. V. 69. P. 366–388.
  16. González I., Aparicio P., Galán E. Correlation between the most frequently used XRD crystallinity indices for kaolinite: their accuracy and reproducibility / Eds H. Kodama, A.R. Mermut, J.K. Torrance // Clays for our Future. Proc. 11th Int. Clay Conf. Ottawa, Canada, 1997. ICC-97 Organizing Committee, Ottawa, Canada, 1999. P. 367–374.
  17. Hinckley D.N. Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina // Clays and Clay Miner. 1963. V. 11. P. 229–235.
  18. Kogure T. Stacking disorder in kaolinite revealed by HRTEM: a review // Clay Science. 2011. V. 15. P. 3–11.
  19. Kogure T., Inoue A. Determination of defect structures in kaolin minerals by high-resolution transmission electron microscopy (HRTEM) // American Mineralogist. 2005. V. 90. P. 85–89.
  20. Kogure T., Johnston C.T., Kogel J.E., Bish D. Stacking disorder in a sedimentary kaolinite // Clays and Clay Miner. 2010. V. 58. P. 63–72.
  21. Lee S., Xu H. Using Complementary Methods of Synchrotron Radiation Powder Difraction and Pair Distribution Function to Refine Crystal Structures with High Quality Parameters ‒ A Review // Minerals. 2020. V. 10. P. 124.
  22. Murray H.H. Structural variation of some kaolinites in relation to dehydroxylated halloysite // American Mineralogist. 1954. V. 39. P. 97–108.
  23. Neder R.B., Burghammer M., Grasl Th., Schulz H., Bram A., Fiedler S. Refinement of the kaolinite structure from single-crystal synchrotron data // Clays and Clay Miner. 1999. V. 47. P. 487–494.
  24. Plançon A., Tchoubar C. Determination of structural defects in phyllosilicates by X-ray powder diffraction-II. Nature and proportion of defects in natural kaolinites // Clays and Clay Miner. 1977. V. 25. P. 436–450.
  25. Plançon A., Giese R.F., Snyder R., Drits V.A., Bookin A.S. Stacking faults in the kaolin-group mineral defect structures of kaolinite // Clays and Clay Miner. 1989. V. 37. P. 203–210.
  26. Plançon A., Zakharie C. An expert system for the structural characterization of kaolinites // Clay Minerals. 1990. V. 25. P. 249–260.
  27. Range K.J., Weiss A. Über das Verhalten von kaolinitit bei hohen Drücken // Ber. Deut. Keram. Ges. 1969. V. 46. P. 231–288.
  28. Sakharov B.A., Drits V.A., McCarty D.K., Walker G.M. Modeling of powder X-ray diffraction patterns of the Clay Minerals Society kaolinite standards: KGa-1b and KGa-2 // Clays and Clay Miner. 2016. V. 64. P. 314–333.
  29. Stoch L., Sikora W. Określenie stopnia uporzadkowania struktury mineralόw grupy kaolinite // Spraw. z Pos. Kom. Nauk. O/PAN w Krakowie, lipiec-grudzien. 1966. P. 651‒ 654.
  30. Stoch L. Mineraly Ilaste. Warsaw: Geological Publishers, 1974. P. 186–193.
  31. Suitch P.R., Young R.A. Atom position in highly ordered kaolinite // Clays and Clay Miner. 1983. V. 31. P. 357–366.
  32. Wojdyr M. Fityk: a general-purpose peak fitting program // Journal of Applied Crystallography. 2010. V. 43. P. 1126–1128.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (434KB)
3.

Download (74KB)
4.

Download (63KB)
5.

Download (71KB)
6.

Download (94KB)
7.

Download (75KB)
8.

Download (76KB)
9.

Download (133KB)
10.

Download (72KB)
11.

Download (128KB)
12.

Download (303KB)
13.

Download (960KB)

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies