Flat Spots Within Cenozoic Sediments of the Nansen Basin, Arctic Ocean: Indicators for Serpentinization, Gas Generation and Accumulation Processes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Flat spot anomalies in the Quaternary part of the section of the Nansen Basin are imaged in seismic records and are interpreted to be related to gas-rich fluid accumulations. The flat spots are mainly located above basement highs between magnetic spreading anomalies C20 (~43 Ma) and C12 (~33 Ma). The complex morphometric analysis of flat spots show that serpentinization processes identified from modelling of gravity anomalies could be original gas source. This process also makes smoothing of the basement highs amplitudes. The depth of the top of the flat spots below the seafloor has an almost constant value of ~390 m indicating the ascent of gases from variable basement depths to a common subsurface fluid trap. The depth of the anomalies below the seafloor corresponds to a theoretical thickness of gas hydrate stability zone in the studied region. Gravity modeling along the Arktika-2011-03 section showed the position of the upper mantle blocks with lower (to 2.95 g/cm3) density within the highs of the acoustic basement. The flat spot anomalies occur above basement highs, below which blocks with lower density typical of serpentinized rocks are modeled. Thus, the serpentinization of the upper mantle ultramafic rocks is considered a main geochemical process, which can explain generation and accumulation of gas in oceanic abyss at a 1–3 km thick sedimentary cover, as well as small vertical movements of the basement blocks due to density reduction and expansion of serpentinized rock.

About the authors

S. Yu. Sokolov

Geological Institute, Russian Academy of Sciences

Author for correspondence.
Email: sysokolov@yandex.ru
Russia, 119017, Moscow, Pyzhevsky lane, 7, bld. 1

W. H. Geissler

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

Email: sysokolov@yandex.ru
Germany, 27568, Bremerhaven

A. S. Abramova

Geological Institute, Russian Academy of Sciences

Email: sysokolov@yandex.ru
Russia, 119017, Moscow, Pyzhevsky lane, 7, bld. 1

D. A. Ryzhova

Department of Geology, Moscow State University

Email: sysokolov@yandex.ru
Russia, 119991, Moscow, Leninskie Gory, 1

I. S. Patina

Geological Institute, Russian Academy of Sciences

Email: sysokolov@yandex.ru
Russia, 119017, Moscow, Pyzhevsky lane, 7, bld. 1

References

  1. Арктический бассейн (геология и морфология) / Под ред. В.Д. Каминского, А.Л. Пискарева, В.А. Поселова. СПб.: ВНИИОкеангеология, 2017. 291 с.
  2. Астафурова Е.Г., Городницкий А.М., Лукьянов С.В., Мащенков С.П. Природа магнитных аномалий и строение океанической коры Срединно-Атлантического хребта и прилегающих котловин в пределах Канаро-Багамского геотраверса // Природа магнитных аномалий и строение океанической коры / Под ред. А.М. Городницкого. М.: Изд-во ВНИРО, 1996. С. 171‒202.
  3. Астафурова Е.Г., Гуревич Н.И., Даниэль Е.Д., Мащенков С.П. Сопоставление особенностей аккреции океанической коры при низкоскоростном и сверхнизкоскоростном спрединге // Российский журнал наук о Земле. 2000. Т. 2. № 3. С. 295‒301.
  4. Баранов Б.В., Лобковский Л.И., Дозорова Д.А., Цуканов Н.В. Система разломов, контролирующих метановые сипы на шельфе моря Лаптевых // Докл. РАН. 2019. Т. 486. № 3. С. 354‒358. https://doi.org/10.31857/0869-56524863354-358
  5. Булычев А.А., Зайцев A.Н. Программа для интерактивного двухмерного подбора плотностной среды по аномальному гравитационному полю // Свидетельство о государственной регистрации программы для ЭВМ № 2 008 611 947. Выдано 18.04.2008.
  6. Бургуто А.Г., Журавлев В.А., Заварзина Г.А., Зинченко А.Г. и др. Государственная геологическая карта Российской Федерации. Масштаб 1 : 1 000 000 (третье поколение). Серия Северо-Карско-Баренцевоморская. Лист S-(36),37 – Баренцево море (зап., центр. части). Объяснительная записка. СПб.: Картографическая фабрика ВСЕГЕИ, 2016. 144 с.
  7. Дмитриев Л.В., Базылев Б.А., Силантьев С.А. и др. Образование водорода и метана при серпентинизации мантийных гипербазитов океана и происхождение нефти // Российский журнал наук о Земле. 1999. Т. 1. № 6. С. 511‒519. https://doi.org/10.2205/2000ES000030
  8. Карта дочетвертичных образований. T-37-40 (Земля Франца-Иосифа, южные острова). Государственная геологическая карта Российской Федерации масштаба 1 : 1 000 000 (новая серия). Лист 1 / Ред. Б.Г. Лопатин. СПб.: ВНИИМоргео, МАГЭ, ПМГРЭ, 2004.
  9. Никишин А.М., Малышев Н.А., Петров Е.И. Основные проблемы строения и истории геологического развития Арктического океана // Вестник Российской Академии наук. 2020. Т. 90. № 5. С. 434‒446. https://doi.org/10.1134/S101933162003003X
  10. Соколов С.Ю. Деформации осадочного чехла Экваториальной Атлантики и их сопоставление с геофизическими полями // Геотектоника. 2017. № 1. С. 81–96.
  11. Соколов С.Ю., Абрамова А.С., Мороз Е.А., Зарайская Ю.А. Амплитуды дизъюнктивных нарушений флангов хребта Книповича (Северная Атлантика) как индикатор современной геодинамики региона // Геодинамика и тектонофизика. 2017. Т. 8. № 4. С. 769–789.
  12. Соколов С.Ю. Тектоника и геодинамика Экваториального сегмента Атлантики // Труды ГИН РАН. Вып. 618. М.: Научный мир, 2018. 269 с.
  13. Соколов С.Ю., Гейсслер В.Х., Абрамова А.С. Плоские пятна в котловине Нансена, связанные с ультрамедленным спредингом и серпентинизацией // Материалы XXIII Международной научной конференции (Школы) по морской геологии. Т. II. М.: ИО РАН, 2019. С. 190‒194.
  14. Старцева К.Ф., Никишин А.М., Малышев Н.А. и др. Геологическая и геодинамическая реконструкция Восточно-Баренцевского мегабассейна на основе анализа регионального сейсмического профиля 4-АР // Геотектоника. 2017. № 4. С. 51‒67.
  15. Физические свойства горных пород и полезных ископаемых (петрофизика). Справочник геофизика / Ред. Н.Б. Дортман. М.: Недра, 1984. 455 с.
  16. Хуторской М.Д., Ахмедзянов В.Р., Ермаков А.В. и др. Геотермия арктических морей // Тр. ГИН РАН. Вып 605. М.: ГЕОС, 2013. 232 с.
  17. Яковлев А.В., Бушенкова Н.А., Кулаков И.Ю., Добрецов Н.Л. Структура верхней мантии Арктическом регионе по данным региональной сейсмотомографии // Геология и геофизика. 2012. Т. 53. № 10. С. 1261‒1272.
  18. Backus M.M., Chen R.L. Flat spot exploration // Geophy-sical Prospecting. 1975. V. 23. Iss. 3. P. 533‒577.
  19. Balmino G., Vales N., Bonvalot S., Briais A. Spherical harmonic modeling to ultra-high degree of Bouguer and isostatic anomalies // J. Geod. 2012. V. 86. P. 499‒520.
  20. Baturin D., Fedukhina T., Savostin L., Yunov A. A geophysical survey of the Spitsbergen margin and surrounding areas // Mar. Geophys. Res. 1994. V. 16. P. 463–484.
  21. Bougault H. Hydrogène et Méthane hydrothermal: Enjeux scientifiques Une ressource potentielle nouvelle? // Mines et Carrières. Industrie Minérale. 2012. № 196. P. 73‒80.
  22. Castro C.F., Knutz P.C., Hopper J.R., Funck T. Depositional evolution of the western Amundsen Basin, Arctic Ocean: Paleoceanographic and tectonic implications // Paleoceanogr. Paleoclimatol. 2018. V. 33(12). P. 1357–1382.
  23. Charlou J.L., Fouquet Y., Bougault H. et al. Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′ N fracture zone and the Mid-Atlantic Ridge // Geochim. Cosmochim. Acta. 1998. V. 62(13). P. 2323‒2333.
  24. Cherkashev G.A., Gusev E.A., Zhirnov E.A. et al. The Knipovich Ridge Rift Zone: Evidence from the Knipovich-2000 Expedition // Dokl. Earth Science. 2001. V. 378. P. 420‒423.
  25. Curewitz D., Okino K., Asada M. et al. Structural analysis of fault populations along the oblique, ultra–slow spreading Knipovich Ridge, North Atlantic Ocean, 74°30′ N– 77°50′ N // J. Struct. Geol. 2010. V. 32. P. 727–740.
  26. Czuba W. 2.5-D seismic tomographic modelling of the crustal structure of north-western Spitsbergen based on deep seismic soundings // Mar. Geophys. Res. 2007. V. 28. P. 213–233.
  27. Delescluse M., Chamot-Rooke N. Serpentinization pulse in the actively deforming Central Indian Basin // Earth Planet. Sci. Lett. 2008. V. 276. P. 140–151.
  28. Dick H., Lin J., Schouten H. An ultraslow-spreading class of ocean ridge // Nature. 2003. V. 426. P. 407‒412.
  29. Edwards M.H., Kurras G.J., Tolstoy M. et al. Evidence of Recent Volcanic Activity on the Ultra-Slow Spreading Gakkel Ridge // Nature. 2001. V. 409. P. 808‒ 812.
  30. Engen Ø., Faleide J.I., Dyreng T.K. Opening of the Fram Strait gateway: A review of plate tectonic constraints // Tectonophysics. 2008. V. 450. P. 51–69.
  31. Engen Ø., Gjengedal J.A., Faleide J.I. et al. Seismic stratigraphy and sediment thickness of the Nansen Basin, Arctic Ocean // Geophys. J. Int. 2009. V. 176. P. 805–821.
  32. Faust L.Y. Seismic velocity as a function of depth and geologic time // Geophysics. 1951. V. 16. № 2. P. 192‒206.
  33. Gardner G.H.F., Gardner L.W., Gregory A.R. Formation velocity and density ‒ the diagnostic basics for stratigraphic traps // Geophysics. 1974. V. 39. № 6. P. 770‒780.
  34. Geissler W.H., Jokat W. A geophysical study of the northern Svalbard continental margin // Geophys. J. Int. 2004. V. 158. P. 50–66.
  35. Hegewald A., Jokat W. Relative sea level variations in the Chukchi region ‒ Arctic Ocean ‒ since the late Eocene // Geophys. Res. Lett. 2013. V. 40. P. 803–807. https://doi.org/10.1002/GRL.50182
  36. Hermann T., Jokat W. Crustal structures of the Boreas Basin and the Knipovich Ridge, North Atlantic // Geophys. J. Int. 2013. V. 193. P. 1399–1414. https://doi.org/10.1093/gji/ggt048
  37. Jackson H.R., Johnson G.L., Sundvor E., Myhre A.M. The Yermak Plateau‒formed at a triple junction // J. Geophys. Res. 1984. V. 89. P. 3223–3232.
  38. Judd A.G., Hovland M. Seabed Fluid Flow: The Impact on Geology, Biology, and the Marine Environment. Cambridge: Cambridge University Press, 2007. 493 p.
  39. Johnson J.E., Mienert J., Plaza-Faverola A. et al. Abiotic methane from ultraslow-spreading ridges can charge Arctic gas hydrates // Geology. 2015. V. 43(5). P. 371–374.
  40. Jokat W., Micksch U. Sedimentary structure of the Nansen and Amundsen basins, Arctic Ocean // Geophys. Res. Lett. 2004. V. 31. L02603. https://doi.org/10.1029/2003GL018352
  41. Jokat W., Weigelt E., Kristoffersen Y. et al. New geophysical results from the south-western Eurasian Basin (Morris Jesup Rise, Gakkel Ridge, Yermak Plateau) and the Fram Strait // Geophys. J. Int. 1995. V. 123. P. 601–610.
  42. Jokat W., Ritzmann O., Schmidt-Aursch M.C. et al. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge // Nature. 2003. V. 423. P. 962–965.
  43. Jakobsson M., Mayer L., Coakley B. et al. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0 // Geophys. Res. Lett. 2012. V. 39(12). L12609. P. 1–6.
  44. Kandilarov A., Mjelde R., Okino K., Murai Y. Crustal structure of the ultra-slow spreading Knipovich Ridge, North Atlantic, along a presumed amagmatic portion of oceanic crustal formation // Mar. Geophys. Res. 2008. V. 29. P. 109–134.
  45. Kandilarov A., Landa H., Mjelde R. et al. Crustal structure of the ultra-slow spreading Knipovich Ridge, North Atlantic, along a presumed ridge segment center // Mar. Geophys Res. 2010. V. 31. P. 173–195.
  46. Keir R.S., Greinert J., Rhein M. et al. Methane and methane carbon isotope ratios in the Northeast Atlantic including the Mid-Atlantic Ridge (50° N) // Deep-Sea Res. I. 2005. V. 52. P. 1043–1070. https://doi.org/10.1016/j.dsr.2004.12.006
  47. Klein E.M. Earth science: Spread thin in the Arctic, News and Views // Nature. 2003. V. 423. P. 932–933.
  48. Kuo B.Y., Forsyth D.W. Gravity Anomalies of the Ridge-Transform System in the South Atlantic between 31° and 34.5° S: upwelling centers and variations in crustal thickness // Mar. Geophys. Res. 1988. V. 10. P. 205‒232.
  49. Ljones F., Kuwano A., Mjelde R., Breivik A., Shimamura H. Crustal transect from the North Atlantic Knipovich Ridge to the Svalbard Margin west of Hornsund // Tectonophysics. 2004. V. 378. P. 17‒41. https://doi.org/10.1016/j.tecto.2003.10.003
  50. Lutz R., Franke D., Berglar K., Heyde I., Schreckenberger B., Klitzke P., Geissler W.H. Evidence for mantle exhumation since the early evolution of the slowspreading Gakkel Ridge, Arctic Ocean // J. Geodyn. 2018. V. 118. P. 154‒165.
  51. Maus S., Barckhausen U., Berkenbosch H. et al. EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements // Geochemistry, Geophysics, Geosystems. G3. 2009. V. 10. № 8. P. 1‒12. https://doi.org/10.1029/2009GC002471
  52. Michael P.J., Langmuir C.H., B. Dick H.J. et al. Magmatic and amagmatic seafloor generation at the ultraslow-sprea-ding Gakkel ridge, Arctic Ocean // Nature. 2003. V. 423. P. 956‒961.
  53. Moore T.E., Pitman J.K. Geology and petroleum potential of the Eurasia Basin // Geol. Soc. Mem. 2011. V. 35. P. 731–750.
  54. Myhre A.M., Thiede J., Firth J.V. et al. Site 911. Proceedings of the Ocean Drilling Programm, Initial Reports. 1995. V. 151. P. 271‒318.
  55. Nikishin A.M., Gaina C., Petrov E.I. et al. Eurasia Basin and Gakkel Ridge, Arctic Ocean: Crustal asymmetry, ultra-slow spreading and continental rifting revealed by new seismic data // Tectonophysics. 2017. V.746. № 10. P.64–82.
  56. Okino K., Curewitz D., Asada M. et al. Preliminary analysis of the Knipovich Ridge segmentation: influence of focused magmatism and ridge obliquity on an ultraslow spreading system // Earth Planet. Sci. Lett. 2002. V. 202. P. 275‒288.
  57. Oufi O., Cannat M. Horen H. Magnetic properties of variably serpentinized abyssal peridotites // Journal of Geophysical Research. 2002. V. 107. № B5. 2095. https://doi.org/10.1029/2001JB000549
  58. Petrov O., Morozov A., Shokalsky S., Kashubin S., Artemieva I., Sobolev N., Petrov E., Ernst R., Sergeev S., Smelror M. Crustal structure and tectonic model of the Arctic region // Earth-Sci. Rev. 2016. V. 154. P. 29–71.
  59. Rajan A., Mienert J., Bünz S., Chand S. Potential serpentinization, degassing, and gas hydrate formation at a young (<20 Ma) sedimented ocean crust of the Arctic Ocean ridge system // J. Geophys. Res. 2012. V. 117. B03102. https://doi.org/10.1029/2011JB008537
  60. Riis F. North of Nordaustlandet. In: Seismic Atlas of Wes-tern Svalbard: A Selection of Seismic Transects // Meddelelser / Ed. O. Eiken. Oslo, Norway: Norsk Polarinstitutt, 1994. V. 130. P. 30–31.
  61. Ritzmann O., Jokat W., Mjelde R., Shimamura H. Crustal structure between the Knipovich Ridge and the Van Mijenfjorden (Svalbard) // Mar. Geophys. Res. 2002. V. 23. P. 379–401.
  62. Ritzmann O., Jokat W., Czuba W. et al. A deep seismic transect from Hovg°ard Ridge to northwestern Svalbard across the continental-ocean transition: A sheared margin study // Geophys. J. Int. 2004. V. 157. P. 683–702.
  63. Schlindwein V. Teleseismic earthquake swarms at ultraslow spreading ridges: indicator for dyke intrusions? // Geophys. J. Int. 2012. V. 190. P. 442–456.
  64. Schmidt-Aursch M., Jokat W. 3D gravity modelling reveals off-axis crustal thickness variations along the western Gakkel Ridge (Arctic Ocean) // Tectonophysics. 2016. V. 691. P. 85‒97.
  65. Shakhova N., Semiletov I.P., Gustafsson O. et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf // Nat. Commun. 2017. 8:15872. https://doi.org/10.1038/ncomms15872
  66. Snow J.E., Edmonds H.N. Ultraslow-spreading ridges: Ra-pid paradigm changes // Oceanography. 2007. V. 20(1). P. 90‒101.
  67. Sorokin M.Y., Zamansky Y.Y., Languinen A.Y. et al. North Pole ‒ 28 ice drift seismic line // ICAM III Third International Conference on Arctic Margins, Celle, Germany, 12–16 October 1998, Abstracts.
  68. Taner M.T., Koehler F., Sheriff R.E. Complex seismic trace analysis // Geophysics. 1979. V. 44. № 6. P. 1041‒1063.
  69. Waghorn K.A., Bünz S., Plaza-Faverola A. Johnson J.E. 3D Seismic investigation of a gas hydrate and fluid flow system on an active mid-ocean ridge; Svyatogor Ridge, Fram Strait // Geochemistry, Geophysics, Geosystems. 2018. V. 19(8). P. 2325–2341.
  70. Wallmann K., Pinero E., Burwicz E. et al. The global inventory of methane hydrate in marine sediments: a theoretical approach // Energies. 2012. V. 5. P. 2449‒2498.
  71. Weigelt E., Jokat W. Peculiarities of roughness and thickness of oceanic crust in the Eurasian Basin, Arctic Ocean // Geophys. J. Int. 2001. V. 145. P. 505–516.

Supplementary files


Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies