3D Structure of D-Аmino Acid Тransaminase from Aminobacterium colombiense in Complex with D-Cycloserine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

D-cycloserine inhibits pyridoxal 5'-phosphate (PLP)-dependent enzymes both reversibly and irreversibly. As an alanine racemase inhibitor, D-cycloserine is used in drug therapy in the treatment of tuberculosis. Several products of the interaction of D-cycloserine and PLP in the active site of the enzyme are known. The crystal structure of the complex of PLP-dependent D-amino acid transaminase from the bacteria Aminobacterium colombiense (Amico) with D-cycloserine obtained at a resolution of 1.9 Å is presented, in which the ring-opened adduct of PLP and D-cycloserine was discovered. In addition, the interaction of D-cycloserine with Amico has been characterized by the kinetic and spectral methods, various products of the interaction of D-cycloserine and PLP in the active site of transaminase have been determined, and the coordination of D-cycloserine and PLP adducts in the Amico active site has been analyzed. It is established that the products of the interaction of D-cycloserine with PLP in the Amico active site are several compounds, including PLP and DCS adducts in the cyclic and open forms, oxime formed by PMP and β-aminooxy-D-alanine, and PMP and β-aminooxypyruvate.

About the authors

S. A. Shilova

Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology,” Russian Academy of Sciences, 119071, Moscow, Russia

Email: zavyalovasonya@yandex.ru
Россия, Москва

I. O. Matyuta

Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology,” Russian Academy of Sciences, 119071, Moscow, Russia

Email: zavyalovasonya@yandex.ru
Россия, Москва

E. Yu. Bezsudnova

Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology,” Russian Academy of Sciences, 119071, Moscow, Russia

Email: zavyalovasonya@yandex.ru
Россия, Москва

M. E. Minyaev

Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia

Email: mminyaev@ioc.ac.ru
Россия, Москва

A. Yu. Nikolaeva

Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology,” Russian Academy of Sciences, 119071, Moscow, Russia; National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: zavyalovasonya@yandex.ru
Россия, Москва; Россия, Москва

V. O. Popov

Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology,” Russian Academy of Sciences, 119071, Moscow, Russia

Email: zavyalovasonya@yandex.ru
Россия, Москва

K. M. Boyko

Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117071, Moscow, Russia

Author for correspondence.
Email: boiko_konstantin@inbi.ras.ru
Россия, Москва

References

  1. Peisach D., Chipman D.M., Van Ophem P.W. et al. // J. Am. Chem. 1998. V. 120. P. 2268. https://doi.org/10.1021/ja973353f
  2. Chiara C. de, Homšak M., Prosser G.A. et al. // Nat. Chem. Biol. 2020. V. 16. P. 686. https://doi.org/10.1038/s41589-020-0498-9
  3. Soper T.S., Manning J.M. // J. Biol. Chem. 1981. V. 256. P. 4263. https://doi.org/10.1016/S0021-9258(19)69428-7
  4. Amorim Franco T.M., Favrot L., Vergnolle O., Blan-chard J.S. // ACS Chem. Biol. 2017. V. 12. P. 1235. https://doi.org/10.1021/acschembio.7b00142
  5. Braunstein A.E. // The Enzymes / Ed. Boyer P.D. London: Academic Press, 1973. P. 379.
  6. Dindo M., Grottelli S., Annunziato G. et al. // Biochem. J. 2019. V. 476. P. 3751. https://doi.org/10.1042/BCJ20190507
  7. Soper T.S., Jones W.M., Lerner B. et al. // J. Biol. Chem. 1977. V. 252. P. 3170. https://doi.org/10.1016/S0021-9258(17)40367-X
  8. Strominger J.L., Ito E., Threnn R.H. // J. Am. Chem. Soc. 1960. V. 82. P. 998. https://doi.org/10.1021/ja01489a058
  9. Walsh C.T. // J. Biol. Chem. 1989. V. 264. P. 2393. https://doi.org/10.1016/S0021-9258(19)81624-1
  10. Caminero J.A., Sotgiu G., Zumla A., Migliori G.B. // Lancet Infect. Dis. 2010. V. 10. P. 621. https://doi.org/10.1016/S1473-3099(10)70139-0
  11. Boyko K., Gorbacheva M., Rakitina T. et al. // Res. Commun. 2014. V. 71. P. 24. https://doi.org/10.1107/S2053230X14025333
  12. Agilent. CrysAlisPRO. Agilent Technologies UK Ltd, 2013.
  13. Vagin A., Teplyakov A. // Acta Cryst. D. 2010. V. 66. P. 22. https://doi.org/10.1107/S0907444909042589
  14. Murshudov G.N., Skubak P., Lebedev A.A. et al. // Acta Cryst. D. 2011. V. 67. P. 355. https://doi.org/10.1107/S0907444911001314
  15. Emsley P., Cowtan K. // Acta Cryst. D. 2004. V. 60. P. 2126. https://doi.org/10.1107/S0907444904019158
  16. Beeler T., Churchich J.E. // J. Biol. Chem. 1976. V. 251. P. 5267. https://doi.org/10.1016/S0021-9258(17)33156-3
  17. Bezsudnova E.Y., Boyko K.M., Nikolaeva A.Y. et al. // Biochimie. 2019. V. 158. P. 130. https://doi.org/10.1016/j.biochi.2018.12.017
  18. Marković-Housley Z., Schimer T., Hohenester E. et al. // Eur. J. Biochem. 1996. V. 236. P. 1025. https://doi.org/10.1111/J.1432-1033.1996.01025.X
  19. Okada K., Hirotsu K., Hayashi H., Kagamiyama H. // Biochemistry. 2001. V. 40. P. 7453. https://doi.org/10.1021/BI010384L
  20. Khomutov A.R., Vepsäläinen J.J., Shvetsov A.S. et al. // Tetrahedron. 1996. V. 52. P. 13751. https://doi.org/10.1016/0040-4020(96)00836-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (116KB)
3.

Download (119KB)
4.

Download (1MB)
5.

Download (608KB)

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies