NOBLE METAL NANOPARTICLES IN BIOMEDICAL THERMOPLASMONICS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The unique properties of metal nanoparticles (NPs) resulting from their localized surface plasmon resonance have led to the emergence and rapid development of promising scientific areas. One of these area is thermoplasmonics, which is based on the ability of such NPs to effectively transform optical radiation into heat. We discuss the optical properties of noble metal NPs, the main approaches to their synthesis, as well as the latest advances of thermoplasmonics in the field of biomedicine. The focus of this review is on photothermal diagnostics and therapy (theranostics) of various diseases. Note that, in addition to theranostics of tumors, the prospects for the use of plasmonic NPs in cardiology, ophthalmology, the fight against bacterial and viral infections, and other biomedical fields have been analyzed.

About the authors

O. V. DEMENT’EVA

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

Email: dema_ol@mail.ru
Россия, 119071, Москва, Ленинский проспект, 31

M. E. KARTSEVA

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: dema_ol@mail.ru
Россия, 119071, Москва, Ленинский проспект, 31

References

  1. Kreibig U., Volmer M. Optical Properties of Metal Clusters. Springer-Verlag, Berlin, 1995.
  2. Климов В.В. Наноплазмоника. М.: Физматлит, 2009.
  3. Active Plasmonics and Tuneable Plasmonic Metamaterials / Ed. by Zayats A.V., Maier S. Hoboken: J. Wiley & Sons Inc. and ScienceWise Publishing, 2013.
  4. Baev A., Prasad P.N., Egren H., Samoć M., Wegener M. Metaphotonics: An emerging field with opportunities and challenges // Phys. Rep. 2015. V. 594. P. 1.
  5. Coronado E.A., Encina E.R., Stefani F.D. Optical properties of metallic nanoparticles: Manipulating light, heat and forces at the nanoscale // Nanoscale. 2011. V. 3. P. 4042.
  6. Photothermal Nanomaterials / Ed. by Ye E., Li Z. London: The Royal Society of Chemistry, 2022.
  7. Jauffred L., Samadi A., Klingberg H., Bendix P.M., Oddershede L.B. Plasmonic heating of nanostructures // Chem. Rev. 2019. V. 119. P. 8087.
  8. Baffou G., Cichos F., Quidant R. Applications and challenges of thermoplasmonics // Nature Mater. 2020. V. 19. P. 946.
  9. Guglielmelli A., Pierini F., Tabiryan N., Umeton C., Bunning T.J., De Sio L. Thermoplasmonics with gold nanoparticles: A new weapon in modern optics and biomedicine // Adv. Photonics Res. 2021. V. 2. 2000198.
  10. Webb J.A., Bardhan R. Emerging advances in nanomedicine with engineered gold nanostructures // Nanoscale. 2014. V. 6. P. 2502.
  11. Hashimoto S., Werner D., Uwada T. Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication // J. Photochem. Photobiol. C. 2012. V. 13. P. 28.
  12. Baffou G., Rigneault H. Femtosecond-pulsed optical heating of gold nanoparticles // Phys. Rev. B. 2011. V. 84. P. 035415.
  13. Ekici O., Harrison R.K., Durr N.J., Eversole D.S., Lee M., Ben-Yakar A. Thermal analysis of gold nanorods heated with femtosecond laser pulses // J. Phys. D: Appl. Phys. 2008. V. 41. P. 185501.
  14. Huang W., Qian W., El-Sayed M.A., Ding Y., Wang Z.L. Effect of the lattice crystallinity on the electron−phonon relaxation rates in gold nanoparticles // J. Phys. Chem. C. 2007. V. 111. P. 10751.
  15. Pustovalov V., Zharov V. Threshold parameters of the mechanisms of selective nanophotothermolysis with gold nanoparticles // Proc. SPIE. 2008. V. 6854. P. 685412-1.
  16. Huang X., El-Sayed M.A. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy // J. Adv. Res. 2010. V. 1. P. 13–28.
  17. Werner D., Furube A., Okamoto T., Hashimoto S. Femtosecond laser-induced size reduction of aqueous gold nanoparticles: in situ and pump−probe spectroscopy investigations revealing Coulomb explosion // J. Phys. Chem. C. 2011. V. 115. P. 8503.
  18. Qin Z., Bischof J.C. Thermophysical and biological responses of gold nanoparticle laser heating // Chem. Soc. Rev. 2012. V. 41. P. 1191.
  19. Khlebtsov N.G., Dykman L.A. Optical properties and biomedical applications of plasmonic nanoparticles // JQSRT. 2010. V. 111. P. 1.
  20. Boulais E., Lachaine R., Hatef A., Meunier M. Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications // J. Photochem. Photobiol. C. 2013. V. 17. P. 26.
  21. Jiang R., Cheng S., Shao L., Ruan Q., Wang J. Mass-based photothermal comparison among gold nanocrystals, PbS nanocrystals, organic dyes, and carbon black // J. Phys. Chem. C. 2013. V. 117. P. 8909.
  22. Lalisse A., Tessier G., Plain J., Baffou G. Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion // J. Phys. Chem. C. 2015. V. 119. P. 25518.
  23. Gutiérrez Y., Losurdo M., González F., Everitt H.O., Moreno F. Nanoplasmonic photothermal heating and near-field enhancements: A comparative survey of 19 metals // J. Phys. Chem. C. 2020. V. 124. P. 7386.
  24. Pathak N.K., Sarathi P., Pandey G.K. Comparative study of thermoplasmonic effects of gold and silver metal nanoparticle // AIP Adv. 2021. V. 11. 045323.
  25. Pásciak A., Marin R., Abiven L., Pilch-Wrobel A., Misiak M., Xu W., Prorok K., Bezkrovnyi O., Marciniak Ł., Chaneac C., Gazeau F., Bazzi R., Roux S., Viana B., Lehto V.-P., Jaque D., Bednarkiewicz A. Quantitative comparison of the light-to-heat conversion efficiency in nanomaterials suitable for photothermal therapy // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 33555.
  26. Bastús N.G., Comenge J., Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: Size focusing versus Ostwald ripening // Langmuir. 2011. V. 27. P. 11098.
  27. Bastús N.G., Merkoçi F., Piella J., Puntes V. Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties // Chem. Mater. 2014. V. 26. P. 2836.
  28. Pelaz B., Grazu V., Ibarra A., Magen C., del Pino P., de la Fuente J.M. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications // Langmuir. 2012. V. 28. P. 8965.
  29. Zhu J., Yong K.-T., Roy I., Hu R., Ding H., Zhao L., Swihart M.T., He G.S., Cui Y., Prasad P.N. Additive controlled synthesis of gold nanorods (GNRs) for two-photon luminescence imaging of cancer cells // Nanotechnology. 2010. V. 21. P. 285106.
  30. Салаватов Н.А., Дементьева О.В., Михайличенко А.И., Рудой В.М. Некоторые аспекты беззатравочного синтеза золотых наностержней // Коллоид. журн. 2018. Т. 80. С. 571.
  31. Wang H., Brandl D.W., Le F., Nordlander P., Halas N.J. Nanorice: A hybrid plasmonic nanostructure // Nano Lett. 2006. V. 6. P. 827.
  32. Loo C., Lin A., Hirsch L., Lee M.-H., Barton J., Halas N., West J., Drezek R. Nanoshell-enabled photonics-based imaging and therapy of cancer // Technol. Cancer Res. Treat. 2004. V. 3. P. 33.
  33. Skrabalak S.E., Au L., Li X., Xia Y. Facile synthesis of Ag nanocubes and Au nanocages // Nat. Protoc. 2007. V. 2. P. 2182.
  34. Mulvaney P., Giersig M., Henglein A. Electrochemistry of multilayer colloids: Preparation and absorption spectrum of gold-coated silver particles // J. Phys. Chem. 1993. V. 97. P. 7061.
  35. Wang H., Brandl D.W., Nordlander P., Halas N. Plasmonic nanostructures: Artificial molecules // Acc. Chem. Res. 2007. V. 40. P. 53.
  36. Lal S., Link S., Halas N.J. Nano-optics from sensing to waveguiding // Nat. Photonics. 2007. V. 1. P. 641.
  37. Omrani M., Mohammadi H., Fallah H. Ultrahigh sensitive refractive index nanosensors based on nanoshells, nanocages and nanoframes: Effects of plasmon hybridization and restoring force // Sci. Rep. 2021. V. 11. P. 2065.
  38. Erickson T.A., Tunnell J.W. Nanomaterials for the Life Sciences V. 3: Mixed Metal Nanomaterials / Ed. by Kumar C.S.S.R. Weinheim: Wiley-VCH, 2009. P. 1.
  39. Jain P.K., Lee K.S., El-Sayed I.H., El-Sayed M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine // J. Phys. Chem. B. 2006. V. 110. P. 7238.
  40. Park K., Biswas S., Kanel S., Nepal D., Vaia R.A. Engineering the optical properties of gold nanorods: Independent tuning of surface plasmon energy, extinction coefficient, and scattering cross section // J. Phys. Chem. C. 2014. V. 118. P. 5918.
  41. Westcott S.L., Jackson J.B., Radloff C., Halas N.J. Relative contributions to the plasmon line shape of metal nanoshells // Phys. Rev. B. 2002. V. 66. P. 155431.
  42. Хлебцов Н.Г., Дыкман Л.А., Хлебцов Б.Н. Синтез и плазмонная настройка золотых и золотосеребряных наночастиц // Успехи химии. 2022. V. 91. P. RCR5058.
  43. Barbosa S., Agrawal A., Rodríguez-Lorenzo L., Pastoriza-Santos I., Alvarez-Puebla A.R., Kornowski A., Weller H., Liz-Marzán L.M. Tuning size and sensing properties in colloidal gold nanostars // Langmuir. 2010. V. 26. P. 14943.
  44. Scarabelli L., Coronado-Puchau M., Giner-Casares J.J., Langer J., Liz-Marzán L.M. Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering // ACS Nano. 2014. V. 8. P. 5833.
  45. Zheng J., Cheng X., Zhang H., Bai X., Ai R., Shao L., Wang J. Gold nanorods: The most versatile plasmonic nanoparticles // Chem. Rev. 2021. V. 121. P. 13342.
  46. Gole A., Murphy C.J. Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed // Chem. Mater. 2004. V. 16. P. 3633.
  47. Siegel A.L., G.A. Baker Bespoke nanostars: Synthetic strategies, tactics, and uses of tailored branched gold nanoparticles // Nanoscale Adv. 2021. V. 3. P. 3980.
  48. Roach L., Coletta P.L., Critchley K., Evans S.D. Controlling the optical properties of gold nanorods in one-pot syntheses // J. Phys. Chem. C. 2022. V. 126. P. 3235.
  49. Skrabalak S.E., Chen J., Sun Y., Lu X., Au L., Cobley C.M., Xia Y. Gold nanocages: Synthesis, properties, and applications // Acc. Chem. Res. 2008. V. 41. P. 1587.
  50. Adams S., Zhang J.Z. Unique optical properties and applications of hollow gold nanospheres (HGNs) // Coord. Chem. Rev. 2016. V. 320–321. P. 18.
  51. Aherne D., Gara M., Kelly J.M., Gun’ko Y.K. From Ag nanoprisms to triangular AuAg nanoboxes // Adv. Funct. Mater. 2010. V. 20. P. 1329.
  52. Maksimova E.A., Barmin R.A., Rudakovskaya P.G., Sindeeva O.A., Prikhozhdenko E.S., Yashchenok A.M., Khlebtsov B.N., Solovev A.A., Huang G., Mei Y., Dey K.K., Gorin D.A. Air-filled microbubbles based on albumin functionalized with gold nanocages and zinc phthalocyanine for multimodal imaging // Micromachines. 2021. V. 12. P. 1161.
  53. Дементьева О.В., Рудой В.М. Коллоидно-химический синтез новых наноструктур на основе серебра с заданным положением локализованного поверхностного плазмонного резонанса // Коллоид. журн. 2011. Т. 73. С. 726.
  54. Rycenga M., Cobley C.M., Zeng J., Li W., Moran C.H., Zhang Q., Qin D., Xia Y. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications // Chem. Rev. 2011. V. 111. P. 3669.
  55. Карцева М.Е., Дементьева О.В., Филиппенко М.А., Рудой В.М. Анизотропные частицы с разной морфологией серебряной оболочки: синтез и оптические свойства // Коллоид. журн. 2011. Т. 73. С. 334.
  56. Панфилова Е.В., Хлебцов Б.Н., Буров А.М., Хлебцов Н.Г. Исследование параметров реакции полиольного синтеза, контролирующих высокий выход серебряных нанокубиков // Коллоид. журн. 2012. Т. 74. С. 104.
  57. Nasilowski M., Mahler B., Lhuillier E., Ithurria S., Dubertret B. Two-dimensional colloidal nanocrystals // Chem. Rev. 2016. V. 116. P. 10934.
  58. Khodashenas B., Ghorbani H.R. Synthesis of silver nanoparticles with different shapes // Arab. J. Chem. 2019. V. 12. P. 1823.
  59. Shi Y., Lyu Z., Zhao M., Chen R., Nguyen Q.N., Xia Y. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications // Chem. Rev. 2021. V. 121. P. 649.
  60. Хлебцов Б.Н., Ханадеев В.А., Максимова И.Л., Терентюк Г.С., Хлебцов Н.Г. Серебряные нанокубики и золотые наноклетки: синтез, оптические и фототермические свойства // Российские нанотехнологии. 2010. Т. 5. № 7–8. С. 54.
  61. Chen H., Shao L., Ming T., Sun Z., Zhao C., Yang B., Wang J. Understanding the photothermal conversion efficiency of gold nanocrystals // Small. 2010. V. 6. P. 2272.
  62. Cole J.R., Mirin N.A., Knight M.W., Goodrich G.P., Halas N.J. Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications // J. Phys. Chem. C. 2009. V. 113. P. 12090.
  63. Zeng J., Goldfeld D., Xia Y. A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch // Angew. Chem. Int. Ed. 2013. V. 52. P. 4169.
  64. Espinosa A., Kolosnjaj-Tabi J., Abou-Hassan A., Sangnier A.P., Curcio A., Silva A.K.A., Di Corato R., Neveu S., Pellegrino T., Liz-Marzán L.M., Wilhelm C. Magnetic (hyper)thermia or photothermia? Progressive comparison of iron oxide and gold nanoparticles heating in water, in cells, and in vivo // Adv. Funct. Mater. 2018. V. 28. P. 1803660.
  65. Huang P., Rong P., Lin J., Li W., Yan X., Zhang M.G., Nie L., Niu G., Lu J., Wang W., Chen X. Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics // J. Am. Chem. Soc. 2014. V. 136. P. 8307.
  66. Ayala-Orozco C., Urban C., Knight M.W., Urban A.S., Neumann O., Bishnoi S.W., Mukherjee S., Goodman A.M., Charron H., Mitchell T., Shea M., Roy R., Nanda S., Schiff R., Halas N.J., Joshi A. Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: Benchmarking against nanoshells // ACS Nano. 2014. V. 8. P. 6372.
  67. Pattani V.P., Tunnell J.W. Nanoparticle-mediated photothermal therapy: A comparative study of heating for different particle types // Laser Surg. Med. 2012. V. 44. P. 675.
  68. Liu P., Wang Y., Liu Y., Tan F., Li J., Li N. S-nitrosothiols loaded mini-sized Au@silica nanorod elicits collagen depletion and mitochondrial damage in solid tumor treatment // Theranostics. 2020. V. 10. P. 6774.
  69. Mondal S., Montaño-Priede J.L., Nguyen V.T., Park S., Choi J., Doan V.H.M., Vo T.M.T., Vo T.H., Large N., Kim C.-S., Oh J. Computational analysis of drug free silver triangular nanoprism theranostic probe plasmonic behavior for in-situ tumor imaging and photothermal therapy // J. Adv. Res. 2022. V. 41. P. 23.
  70. Chen Y.-S., Frey W., Kim S., Homan K., Kruizinga P., Sokolov K., Emelianov S. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy // Opt. Express. 2010. V. 18. P. 8867.
  71. Khanadeev V.A., Simonenko A.V., Grishin O.V., Khlebtsov N.G. One-shot laser-pulse modification of bare and silica-coated gold nanoparticles of various morphologies // Nanomaterials. 2023. V. 13. P. 1312.
  72. Croissant J.G., Guardado-Alvarez T.M. Photocracking silica: Tuning the plasmonic photothermal degradation of mesoporous silica encapsulating gold nanoparticles for cargo release // Inorganics. 2019. V. 7. P. 72.
  73. Gonçalves A.S.C., Rodrigues C.F., Moreira A.F., Correia I.J. Strategies to improve the photothermal capacity of gold-based nanomedicines // Acta Biomater. 2020. V. 116. P. 105.
  74. Салаватов Н.А., Большакова А.В., Морозов В.Н., Колыванова М.А., Исагулиева А.К., Дементьева О.В. Золотые наностержни с функционализированной органокремнеземной оболочкой: синтез и перспективы применения в тераностике опухолей // Коллоид. журн. 2022. Т. 84. С. 97.
  75. Qiu J., Wei W.D. Surface plasmon-mediated photothermal chemistry // J. Phys. Chem. C. 2014. V. 118. P. 20735.
  76. Pandres E.P., Crane M.J., Davis E.J., Pauzauskie P.J., Holmberg V.C. Laser-driven growth of semiconductor nanowires from colloidal nanocrystals // ACS Nano. 2021. V. 15. P. 8653.
  77. Song C., Wang Z., Yin Z., Xiao D., Ma D. Principles and applications of photothermal catalysis // Chem. Catal. 2022. V. 2. P. 52.
  78. Ye H., Li X., Deng L., Li P., Zhang T., Wang X., Hsiao B.S. Silver nanoparticle-enabled photothermal nanofibrous membrane for light-driven membrane distillation // Ind. Eng. Chem. Res. 2019. V. 58. P. 3269.
  79. Alessandro F., Macedonio F., Drioli E. Plasmonic phenomena in membrane distillation // Membranes. 2023. V. 13. P. 254.
  80. Shi Y., Zhang C., Wang Y., Cui Y., Wang Q., Liu G., Gao S., Yuan Y. Plasmonic silver nanoparticles embedded in flexible three-dimensional carbonized melamine foam with enhanced solar-driven water evaporation // Desalination. 2021. V. 507. P. 115038.
  81. Sharma P., Daipuriya R., Singh M. Growth of V2O5 nanopillers using plasma assisted oxidation cum sublimation // AIP Conf. Proc. 2020. V. 2220. P. 020033.
  82. Fang X., Sharma M., Stennett C., Gill P.P. Optical sensitisation of energetic crystals with gold nanoparticles for laser ignition // Combust. Flame. 2017. V. 183. P. 15.
  83. Fang X., Stone M., Stennett C. Pulsed laser irradiation of a nanoparticles sensitised RDX crystal // Combust. Flame. 2020. V. 214. P. 387.
  84. Churchyard S., Fang X., Vrcelj R. Laser ignitibility of energetic crystals doped with gold nanoparticles // Opt. Laser Technol. 2019. V. 113. P. 281.
  85. Dai Y., He G., Long S., Li X., Meng L., Wang P., Li X., Yang Z. Precise tailoring of mesoporous silica-coated gold nanorods for laser ignition at 1064 nm // ACS Appl. Nano Mater. 2023. V. 6. P. 4946.
  86. Hirsch L.R., Stafford R.J., Bankson J.A., Sershen S.R., Rivera B., Price R.E., Hazle J.D., Halas N.J., West J.L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance // Proc. Natl. Acad. Sci. U.S.A. 2003. V. 100. P. 13549.
  87. Yang X., Yang M., Pang B., Vara M., Xia Y. Gold nanomaterials at work in biomedicine // Chem Rev. 2015. V. 115. P. 10410.
  88. Izci M., Maksoudian C., Manshian B.B., Soenen S.J. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors // Chem. Rev. 2021. V. 121. P. 1746.
  89. Kang S., Bhang S. H., Hwang S., Yoon J.K., Song J., Jang H.K., Kim S., Kim B.S. Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy // ACS Nano 2015. V. 9. P. 9678.
  90. Fan W., Yung B., Huang P., Chen X. Nanotechnology for multimodal synergistic cancer therapy // Chem. Rev. 2017. V. 117. P. 13566.
  91. Ali M.R.K., Wu Y., El-Sayed M.A. Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application // J. Phys. Chem. C. 2019. V. 123. P. 15375.
  92. Ali M.R., Ibrahim I.M., Ali H.R., Selim S.A., El-Sayed M. Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis // Int. J. Nanomed. 2016. V. 11. P. 4849.
  93. Ali M.R.K., Wu Y., Tang Y., Xiao H., Chen K., Han T., Fang N., Wu R., El-Sayed, M.A. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins // Proc. Natl. Acad. Sci. USA. 2017. V. 114. P. e5655.
  94. Liu Y., Chongsathidkiet P., Crawford B.M., Odion R., Dechant C.A., Kemeny H.R., Cui X., Maccarini P.F., Lascola C.D., Fecci P.E., Vo-Dinh T. Plasmonic gold nanostar-mediated photothermal immunotherapy for brain tumor ablation and immunologic memory // Immunotherapy. 2019. V. 11. P. 1293.
  95. Abadeer N.S., Murphy C.J. Recent progress in cancer thermal therapy using gold nanoparticles // J. Phys. Chem. C. 2016. V. 120. P. 4691.
  96. Kim M., Lee J.-H., Nam J.-M. Plasmonic photothermal nanoparticles for biomedical applications // Adv. Sci. 2019. V. 6. P. 1900471.
  97. Zhou R., Zhang M., Xi J., Li J., Ma R., Ren L., Bai Z., Qi K., Li X. Gold nanorods-based photothermal therapy: Interactions between biostructure, nanomaterial, and near-infrared irradiation // Nanoscale Res. Lett. 2022. V. 17. P. 68.
  98. Piao J.-G., Liu D., Hu K., Wang L., Gao F., Xiong Y., Yang L. Cooperative nanoparticle system for photothermal tumor treatment without skin damage // ACS Appl. Mater. Interfaces. 2016. V. 8. P. 2847.
  99. Yang Y., Zheng X., Chen L., Gong X., Yang H., Duan X. Zhu Y. Multifunctional gold nanoparticles in cancer diagnosis and treatment // Int. J. Nanomed. 2022. V. 17. P. 2041.
  100. Якубовская Р.И., Панкратов А.А., Андреева Т.Н., Венедиктова Ю.Б., Коган Б.Я., Бутенин А.В., Пучнова В.А., Фезулова Р.А., Рудой В.М., Дементьева О.В., Карцева М.Е., Филиппенко М.А., Чиссов В.И., Ворожцов Г.Н. Импульсная лазерная гипертермия с наночастицами в качестве термосенсибилизаторов – новый потенциальный метод противоопухолевой терапии // Российский онкологический журнал. 2010. № 6. С. 32.
  101. Дементьева О.В., Филиппенко М.А., Карцева М.Е., Седых Э.М., Банных Л.Н., Якубовская Р.И., Панкратов А.А., Коган Б.Я., Рудой В.М. Синтез плазмонно-резонансных анизотропных наночастиц со структурой “ядро/оболочка” и перспективы их использования в лазерной терапии опухолей // Российские нанотехнологии. 2012. Т. 7. № 9−10. С. 78.
  102. Sears J., Swanner J., Fahrenholtz C.D., Snyder C., Rohde M., Levi-Polyachenko N., Singh R. Combined photothermal and ionizing radiation sensitization of triple-negative breast cancer using triangular silver nanoparticles // Int. J. Nanomed. 2021. V. 16. P. 851.
  103. Thompson E.A., Graham E., MacNeill C.M., Young M., Donati G., Wailes E.M., Jones B.T., Levi-Polyachenko N.H. Differential response of MCF7, MDA-MB-231, and MCF 10A cells to hyperthermia, silver nanoparticles and silver nanoparticle-induced photothermal therapy // Int. J. Hyperth. 2014. V. 30. P. 312.
  104. Patlolla A.K., Hackett D., Tchounwou P.B. Silver nanoparticle-induced oxidative stress-dependent toxicity in Sprague−Dawley rats // Mol. Cell. Biochem. 2015. V. 399. P. 257.
  105. Guo D., Zhu L., Huang Z., Zhou H., Ge Y., Ma W., Wu J., Zhang X., Zhou X., Zhang Y., Zhao Y., Gu N. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions // Biomaterials. 2013. V. 34. P. 7884.
  106. Tambunlertchai S., Geary S.M., Naguib Y.W., Salem A.K. Investigating silver nanoparticles and resiquimod as a local melanoma treatment // Eur. J. Pharm. Biopharm. 2023. V. 183. P. 1.
  107. Swanner J., Mims J., Carroll D.L., Akman S.A. Furdui C.M., Torti S.V. Singh R.N. Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells // Int. J. Nanomed. 2015. V. 10. P. 3937.
  108. Zhang R., Kiessling F., Lammers T., Pallares R.M. Clinical translation of gold nanoparticles // Drug Deliv. Transl. Res. 2023. V. 13. P. 378.
  109. Hao Y., Dong M.L., Zhang T.Y., Peng J.R., Jia Y.P., Cao Y.P., Qian Z.Y. Novel approach of using near-infrared responsive PEGylated gold nanorod coated poly(l-lactide) microneedles to enhance the antitumor efficiency of docetaxel-loaded MPEG-PDLLA micelles for treating an A431 tumor // ACS Appl. Mater. Interfaces. 2017. V. 9. P. 15317.
  110. Wang L., Tang S., Yu Y., Lv Y., Wang A., Yan X., Li N., Sha C., Sun K., Li Y. Intranasal delivery of temozolomide-conjugated gold nanoparticles functionalized with Anti-EphA3 for glioblastoma targeting // Mol. Pharmaceutics. 2021. V. 18. P. 915.
  111. Kharlamov A.N., Gabinsky J.L. Plasmonic photothermic and stem cell therapy of atherosclerotic plaque as a novel nanotool for angioplasty and artery remodeling // Rejuvenation Res. 2012. V. 15. P. 222.
  112. Yeager D., Chen Y.-S., Litovsky S., Emelianov S. Intravascular photoacoustics for image-guidance and temperature monitoring during plasmonic photothermal therapy of atherosclerotic plaques: A feasibility study // Theranostics. 2014. V. 4. P. 36.
  113. Kharlamov A.N., Tyurnina A.E., Veselova V.S., Kovtun O.P., Shur V.Y., Gabinsky J.L. Silica–gold nanoparticles for atheroprotective management of plaques: Results of the NANOM-FIM trial // Nanoscale. 2015. V. 7. P. 8003.
  114. Qin J., Peng Z., Li B., Ye K., Zhang Y., Yuan F., Yang X., Huang L., Hu J., Lu X. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages // Nanoscale. 2015. V. 7. P. 13991.
  115. Vazquez-Prada K.X., Moonshi S.S., Wu Y., Akther F., Tse B.W.C., Sokolowski K.A., Peter K., Wang X., Xu G., Ta H.T. A spiky silver-iron oxide nanoparticle for highly efficient targeted photothermal therapy and multimodal imaging of thrombosis // Small. 2023. V. 19. P. 2205744.
  116. Dai T., He W., Yao C., Ma X., Ren W., Mai Y., Wu A. Applications of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis // Biomater. Sci. 2020. V. 8. P. 3784.
  117. Hu Q., Fang Z., Ge J., Li H. Nanotechnology for cardiovascular diseases // Innovation. 2022. V. 3. 100214.
  118. Ye T., Lai Y., Wang Z., Zhang X., Meng G., Zhou L., Zhang Y., Zhou Z., Deng J., Wang M., Wang Y., Zhang Q., Zhou X., Yu L., Jiang H., Xiao X. Precise modulation of gold nanorods for protecting against malignant ventricular arrhythmias via near-infrared neuromodulation // Adv. Funct. Mater. 2019. V. 29. 1902128.
  119. Son J.H., Cho B., Hong S., Lee S.H., Hoxha O., Haack A.J., Lee L.P. Ultrafast photonic PCR // Light Sci. Appl. 2015. V. 4. P. e280.
  120. Jiang K., Wu J., Qiu Y., Go Y.Y., Ban K., Park H.J., Lee J.-H. Plasmonic colorimetric PCR for Rapid molecular diagnostic assays // Sens. Actuators. B. 2021. V. 337. 129762.
  121. Mohammadyousef P., Paliouras M., Trifiro M.A., Kirk A.G. Plasmonic and label-free real-time quantitative PCR for point-of-care diagnostics // Analyst. 2021. V. 146. P. 5619.
  122. Kang B.-H., Jang K.-W., Yu E.-S., Na H., Lee Y.-J., Ko W.-Y., Bae N.H., Rho D., Jeong K.-H. Ultrafast plasmonic nucleic acid amplification and real-time quantification for decentralized molecular diagnostics // ACS Nano. 2023. V. 17. P. 6507.
  123. Borzenkov M., Pallavicini P., Taglietti A., D’Alfonso L., Collini M., Chirico G. Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms // Beilstein J. Nanotechnol. 2020. V. 11. P. 1134.
  124. Akouibaa A., Masrour R., Benhamou M., Derouiche A. Thermoplasmonics decontamination of respirators face masks using silver nanoparticles: A new weapon in the fight against COVID-19 pandemic // Plasmonics. 2022. V. 17. P. 2307.
  125. De Miguel I., Prieto I, Albornoz A., Sanz V., Weis C., Turon P., Quidant R. Plasmon-based biofilm inhibition on surgical implants // Nano Lett. 2019. V. 19. P. 2524.
  126. Milanesi A., Magni G., Centi S., Schifino G., Aluigi A., Khlebtsov B.N., Cavigli L., Barucci A., Khlebtsov N.G., Ratto F., Rossi F., Pini R. Optically activated and interrogated plasmonic hydrogels for applications in wound healing // J. Biophotonics. 2020. V. 13. P. e202000135.
  127. Liu Y., Li F., Guo Z., Xiao Y., Zhang Y., Sun X., Zhe T., Cao Y., Wang L., Lu Q., Wang J. Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections // Chem. Eng. J. 2020. V. 382. P. 122990.
  128. Merkl P., Zhou S., Zaganiaris A., Shahata M., Eleftheraki A., Thersleff T., Sotiriou G.A. Plasmonic coupling in silver nanoparticle aggregates and their polymer composite films for near-infrared photothermal biofilm eradication // ACS Appl. Nano Mater. 2021. V. 4. P. 5330.
  129. Zhao Y.Q., Sun Y., Zhang Y., Ding X., Zhao N., Yu B., Zhao H., Duan S., Xu F.-J. Well-defined gold nanorod/polymer hybrid coating with inherent antifouling and photothermal bactericidal properties for treating an infected hernia // ACS Nano. 2020. V. 14. P. 2265.
  130. Nanda S.S., Wang T., Hossain M.I., Yoon H.Y., Selvan S.T., Kim K., Yi D.K. Gold-nanorod-based scaffolds for wound-healing applications // ACS Appl. Nano Mater. 2022. V. 5. P. 8640.
  131. Labouta H.I., Hooshmand N., Upreti T., El‑Sayed M.A. Localized plasmonic photothermal therapy as a life-saving treatment paradigm for hospitalized COVID-19 patients // Plasmonics. 2021. V. 16. P. 1029.
  132. Zhuo Y., Zhang Y., Wang B., Cheng S., Yuan R., Liu S., Zhao M., Xu B., Zhang Y., Wang X. Gold nanocluster & indocyanine green based triple-effective therapy for MRSA infected central nervous system // Appl. Mater. Today. 2022. V. 27. 101453.
  133. Mahmoud N.N., Alkilany A.M., Khalil E.A., Al-Bakri A.G. Nano-photothermal ablation effect of hydrophilic and hydrophobic functionalized gold nanorods on Staphylococcus aureus and Propionibacterium acnes // Sci. Rep. 2018. V. 8. 6881.
  134. Paithankar D.Y., Sakamoto F.H., Farinelli W.A., Kositratna G., Blomgren R.D., Meyer T.J., Faupel L.J., Kauvar A.N.B., Lloyd J.R., Cheung W.L., Owczarek W.D., Suwalska A.M., Kochanska K.B., Nawrocka A.K., Paluchowska E.B., Podolec K.M., Pirowska M.M., Wojas-Pelc A.B., Anderson R.R. Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles // J. Invest. Dermatol. 2015. V. 135. P. 1727.
  135. Park J.W., Shin S.H., Lee W.G., Li K., Seo S.J., Kim C.H., Park K.Y. Evaluation of the efficacy and safety of the 1064 nm picosecond Nd:YAG laser with a topically applied gold and diamond suspension for facial skin rejuvenation: A pilot study // Dermathol. Ther. 2022. V. 35. e15459.
  136. Seo J., Roh H.J., Jung J.Y. Gut microbiota modulation and gold nanoparticle-mediated photothermal therapy for treatment of recalcitrant acne // Clin. Case Rep. 2022. V. 10. P. e05642.
  137. https://www.prnewswire.com/news-releases/us-fda-clears-sebacia-microparticles-for-the-treatment-of-mild-to-moderate-inflammatory-acne-300713403.html.
  138. Masse F., Ouellette M., Lamoureux G., Boisselier E. Gold nanoparticles in ophthalmology // Med. Res. Rev. 2019. V. 39. P. 302.
  139. Sauvage F., Nguyen V.P., Li Y., Harizaj A., Sebag J., Roels D., Van Havere V., Peynshaert K., Xiong R., Fraire J.C., Tassignon M.-J., Remaut K., Paulus Y.M., Braeckmans K., De Smedt S.C. Laser-induced nanobubbles safely ablate vitreous opacities in vivo // Nat. Nanotechnol. 2022. V. 17. P. 552.
  140. Lin Y.-X., Hu X.-F., Zhao Y., Gao Y.-J., Yang C., Qiao S.-L., Wang Y., Yang P.-P., Yan J., Sui X.-C., Qiao Z.-Y., Li L.-L., Xie J.-B., Zhu S.-Q., Wu X.-C., Li Y., Wang L., Wang H. Photothermal ring integrated intraocular lens for high-efficient eye disease treatment / Adv. Mater. 2017. V. 29. 1701617.
  141. Liu D., Wu Q., Chen W., Chen K., Lin H., Liu F., Xie X., Chen H.-J., Chen W. Nanoporous gold ring-integrated photothermal intraocular lens for active prevention of posterior capsular opacification // Small. 2022. V. 18. P. 2201098
  142. Wang Y., Xu Z., Li W., Wei W., Qin M., Li Q., Liu X., Zhang X., Wang X. A graphene-Ag based near-infrared defined accurate anti-scarring strategy for ocular glaucoma surgery // Biomater. Sci. 2022. V. 10. P. 1281.
  143. Pang Y., Wei C., Li R., Wu Y., Liu W., Wang F., Zhang X., Wang X. Photothermal conversion hydrogel based mini-eye patch for relieving dry eye with long-term use of the light-emitting screen // Int. J. Nanomed. 2019. V. 14. P. 5125.
  144. Zare I., Yaraki M.T., Speranza G., Najafabadi A.H., Shourangiz-Haghighi A., Nik A.B., Manshian B.B., Saraiva C., Soenen S.J., Kogan M.J., Lee J.W., Apollo N.V., Bernardino L., Araya E., Mayer D., Mao G., Hamblin M.R. Gold nanostructures: Synthesis, properties, and neurological applications // Chem. Soc. Rev. 2022. V. 51. P. 2601.
  145. Pan W.-T., Liu P.-M., Ma D., Yang J.-J. Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies // J. Transl. Med. 2023. V. 21. P. 135.
  146. Wang Y., Garg R., Cohen-Karni D., Cohen-Karni T. Neural modulation with photothermally active nanomaterials // Nat. Rev. Bioeng. 2023. V. 1. P. 193.
  147. Brown W.G.A., Needham K., Begeng J.M., Thompson A.C., Nayagam B.A., Kameneva T., Stoddart P.R. Thermal damage threshold of neurons during infrared stimulation // Biomed. Opt. Express. 2020. V. 11. P. 2224.
  148. Jang H., Yoon D., Nam Y. Enhancement of thermoplasmonic neural modulation using a gold nanorod-immobilized polydopamine film // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 24122.
  149. Soloviev A., Ivanova I., Sydorenko V., Sukhanova K., Melnyk M., Dryn D., Zholos A. Calcium-dependent modulation of BKCa channel activity induced by plasmonic gold nanoparticles in pulmonary artery smooth muscle cells and hippocampal neurons // Acta Physiol. 2023. V. 237. P. e13922.
  150. Begeng J.M., Tong W., del Rosal B., Ibbotson M., Kameneva T., Stoddart P.R. Activity of retinal neurons can be modulated by tunable near-infrared nanoparticle sensors // ACS Nano. 2023. V. 17. P. 2079.
  151. Hassanpour-Tamrin S., Taheri H., Hasani-Sadrabadi M.M., Mousavi S.H.S., Dashtimoghadam E., Tondar M., Adibi A., Moshaverinia A., Nezhad A.S., Jacob K.I. Nanoscale optoregulation of neural stem cell differentiation by intracellular alteration of redox balance // Adv. Funct. Mater. 2017. V. 27. P. 1701420.
  152. Qu A., Sun M., Kim J.-Y., Xu L., Hao C., Ma W., Wu X., Liu X., Kuang H., Kotov N.A. Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies // Nat. Biomed. Eng. 2021. V. 5. P. 103.
  153. Suthar J.K., Vaidya A., Ravindran S. Toxic implications of silver nanoparticles on the central nervous system: A systematic literature review // J. Appl. Toxicol. 2023. V. 43. P. 4.
  154. Pylaev T., Avdeeva E.S., Khlebtsov N.G. Plasmonic nanoparticles and nucleic acids hybrids for targeted gene delivery, bioimaging, and molecular recognition // J. Innovative Optical Health Sci. 2021. V. 14. P. 2130003.
  155. Wang L., Wei X., Liu H., Fan Y. Nanomaterial-mediated photoporation for intracellular delivery // Acta Biomater. 2023. V. 157. P. 24.
  156. Lukianova-Hleb E.Y., Samaniego A.P., Wen J., Metelitsa L.S., Chang C.-C., Lapotko D.O. Selective gene transfection of individual cells in vitro with plasmonic nanobubbles // J. Control. Rel. 2011. V. 152. P. 286.
  157. Pylaev T., Vanzha E., Avdeeva E., Khlebtsov B., K-hlebtsov N. A novel cell transfection platform based on laser optoporation mediated by Au nanostar layers // J. Biophotonics. 2019. V. 12. P. e201800166.
  158. Pylaev T., Efremov Y., Avdeeva E.S., Antoshin A.A., Shpichka A.I., Khlebnikova T.M., Timashev P., Khlebtsov N.G. Optoporation and recovery of living cells under au nanoparticle layer-mediated NIR-laser irradiation // ACS Appl. Nano Mater. 2021. V. 4. P. 13206.
  159. Kafshgari M.H., Agiotis L., Largillière I., Patskovsky S., Meunier M. Antibody-functionalized gold nanostar-mediated on-resonance picosecond laser optoporation for targeted delivery of RNA therapeutics // Small. 2021. V. 17. 2007577.
  160. Yao C., Rudnitzki F., He Y., Zhang Z., Hüttmann G., Rahmanzadeh R. Cancer cell-specific protein delivery by optoporation with laser-irradiated gold nanorods // J. Biophotonics. 2020. V. 13. P. e202000017.
  161. Nikitin M.P., Zelepukin I.V., Shipunova V.O., Sokolov Ilya L., Deyev S.M., Nikitin P.I. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes // Nat. Biomed. Eng. 2020. V. 4. P. 717.
  162. Gao H., Zhang L., Lian X., Wang Y., Jiang S., Wang G., Dai X., Zou H., Ding D. A dentin hypersensitivity treatment using highly stable photothermal conversion nanoparticles // Mater. Chem. Frontiers. 2021. V. 5. P. 3388.
  163. Ribera J., Vilches C., Sanz V., de Miguel I., Portolés I., Córdoba-Jover B., Prat E., Nunes V., Jiménes W., Quidant R., Morales-Ruiz M. Treatment of hepatic fibrosis in mice based on targeted plasmonic hyperthermia // ACS Nano. 2021. V. 15. P. 7547.
  164. Li X., Hou Y., Meng X., Li Ge., Xu F., Teng L., Sun F., Li Y. Folate receptor-targeting mesoporous silica-coated gold nanorod nanoparticles for the synergistic photothermal therapy and chemotherapy of rheumatoid arthritis // RSC Adv. 2021. V. 11. P. 3567.
  165. Jiang Y., Liu J., Qin J., Lei J., Zhang X., Xu Z., Li W., Liu X., Wang R., Li B., Lu X. Light-activated gold nanorods for effective therapy of venous malformation // Mater. Today Bio. 2022. V. 16. P. 100401.
  166. Zhang X., Cheng G., Xing X., Liu J., Cheng Y., Ye T., Wang Q., Xiao X., Li Z., Deng H. Near-infrared light-triggered porous AuPd alloy nanoparticles to produce mild localized heat to accelerate bone regeneration // J. Phys. Chem. Lett. 2019. V. 10. P. 4185.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (437KB)
3.

Download (259KB)
4.

Download (1MB)
5.

Download (38KB)
6.

Download (461KB)
7.

Download (294KB)


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies