PECULIARITIES OF STRUCTURAL PHASE TRANSITIONS IN A SELF-ORGANIZING AOT/WATER/ISOPROPYL MYRISTATE SYSTEM UPON INTRODUCTION OF L-LYSINE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New biocompatible microemulsion and liquid-crystalline sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water/isopropyl myristate systems have been obtained for the delivery of drugs and physiologically active substances. A combination of dynamic light scattering and X-ray diffraction methods has been used to determine their structural and size characteristics. The Primus and SasView software packages have been employed to simulate the shape and arrangement of particles as depending on AOT content. It has been shown that, as the concentration of the surfactant increases, the shape of micelles varies from spherical to cylindrical, and, at high concentrations, a structural phase transition occurs with the formation of a liquid-crystalline phase. The influence of a model bioactive compound, L-lysine, on the size and structure of the system has been studied. It has been revealed that the addition of the amino acids to the samples leads to an increase in the microemulsion droplet size, and, in the case of the liquid-crystalline phase, to the disintegration of the hexagonal packing into individual cylinders. The results obtained can be useful for the analysis of the mechanisms of L-lysine release from the AOT/water/isopropyl myristate transport system.

About the authors

N. V. SAUTINA

Kazan National Research Technological University, Kazan, Russia.

Email: n.sautina@mail.ru
Россия, 420015, Казань, ул. К. Маркса, 68

A. T. GUBAIDULLIN

Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center
“Kazan Scientific Center,” Russian Academy of Sciences, Kazan, Russia

Email: n.sautina@mail.ru
Россия, 420029, Казань, ул. Академика Арбузова 8

YU. G. GALYAMETDINOV

Kazan National Research Technological University, Kazan, Russia.

Author for correspondence.
Email: n.sautina@mail.ru
Россия, 420015, Казань, ул. К. Маркса, 68

References

  1. Froelich A., Osmałek T., Jadach B. et al. Microemulsion-based media in nose-to-brain drug delivery // Pharmaceutics. 2021. V. 13. № 2. P. 201–238. https://doi.org/10.3390/pharmaceutics13020201
  2. Ohadi M., Shahravan A., Dehghannoudeh N. et al. Potential use of microbial surfactant in microemulsion drug delivery system: a systematic review // Drug Des. Devel. Ther. 2020. V. 14. P. 541–550. https://doi.org/10.2147/DDDT.S232325
  3. Grande F., Ragno G., Muzzalupo R. et al. Gel formulation of nabumetone and a newly synthesized analog: microemulsion as a photoprotective topical delivery system // Pharmaceutics. 2020. V. 12. № 5. P. 423–437. https://doi.org/10.3390/pharmaceutics12050423
  4. Okur N.U., Cxag E.S., Siafaka P.I. Novel ocular drug delivery systems: an update on microemulsions // J. Ocul. Pharmacol. Ther. 2020. V. 36. № 6. P. 1–13. https://doi.org/10.1089/jop.2019.0135
  5. Мурашова Н.М., Полякова А.С., Юртов Е.В. Влияние ди-(2-этилгексил)фосфорной кислоты на свойства микроэмульсии в системе ди(2-этилгексил)фосфат натрия–ди(2-этилгексил)фосфорная кислота–декан–вода // Коллоидный журнал. T. 80. 2018. № 5. P. 541–551. https://doi.org/10.1134/S0023291218050105
  6. Souto E.B., Cano M., Martines-Gomez C. et al. Microemulsions and nanoemulsions in skin drug delivery // Bioengineering. 2022. V. 9. № 4. P. 158–180. https://doi.org/10.3390/bioengineering9040158
  7. Saleem M.A., Nazar M.F., Siddique M.Y. et al. Soft-templated fabrication of antihypertensive nano-irbesartan: structural and dissolution evaluation // J. Mol. Liq. 2019. V. 292. P. 111388–111396. https://doi.org/10.1016/j.molliq.2019.111388
  8. Kajbafvala A., Salabat A. Microemulsion and microemulsion gel formulation for transdermal delivery of rutin: optimization, in-vitro/ex-vivo evaluation and SPF determination // J. Dispers. Sci. Technol. 2022. V. 43. № 12. P. 1848–1857. https://doi.org/10.1080/01932691.2021.1880928
  9. Arsene M.-L., Raut L., Calin M. et al. Versatility of reverse micelles: from biomimetic models to nano (bio) sensor design // Processes. 2021. V. 9. P. 345–387. https://doi.org/10.3390/ pr9020345
  10. Poh Y., Ng S., Ho K. Formulation and characterisation of 1-ethyl-3-methylimidazolium acetate-in-oil microemulsions as the potential vehicle for drug delivery across the skin barrier // J. Mol. Liq. 2019. V. 273. P. 339–345. https://doi.org/10.1016/j.molliq.2018.10.034
  11. Zheng Y., Xu G., Ni Q., Wang Y. Microemulsion delivery system improves cellular uptake of genipin and its protective effect against Aβ1-42-induced PC12 cell cytotoxicity // Pharmaceutics. 2022. V. 14. № 3. P. 617–638. https://doi.org/10.3390/pharmaceutics14030617
  12. Callender S.P., Mathews J.A., Kobernyk K., Wettig S.D. Microemulsion utility in pharmaceuticals: implications for multi-drug delivery // Int. J. Pharm. 2017. V. 526. P. 425–442. https://doi.org/10.1016/j.ijpharm.2017.05.005
  13. Chountoulesi M., Pispas S., Tseti I.K. et al. Lyotropic liquid crystalline nanostructures as drug delivery systems and vaccine platforms // Pharmaceuticals. 2022. V. 15. P. 429–461. https://doi.org/10.3390/ph15040429
  14. Selivanova N.M., Galeeva A.I., Galyametdinov Yu.G. Chitosan/lactic acid systems: liquid crystalline behavior, rheological properties, and riboflavin release in vitro // Int. J. Mol. Sci. 2022. V. 23. № 21. P. 13207–1331. https://doi.org/10.3390/ijms232113207
  15. Mueller-Goymannand C.C., Hamann H.-J. Sustained release from reverse micellar solutions by phase transformations into lamellar liquid crystals // J. Control. Release. 1993. V. 23. P. 165–174. https://doi.org/10.1016/0168-3659(93)90042-4
  16. Саутина Н.В., Захарова А.О., Галяметдинов Ю.Г. Влияние межмолекулярных взаимодействий в системе лецитин–пропиленгликоль на межфазной границе вода / вазелиновое масло на характер образования самоорганизующихся структур // Жидк. крист. и их практич. использ. 2017. Т. 17. № 2. С. 35–41. https://doi.org/10.18083/LCAppl.2017.2.35
  17. Саутина Н.В., Губайдуллин А.Т., Галяметдинов Ю.Г. Фазовые превращения в самоорганизующейся системе на основе лецитина // Журнал прикладной химии. 2017. Т. 90. № 11. С. 1482–1488.
  18. Nakamura N., Tagawa T., Kihara K. et al. Phase transition between microemulsion and lamellar liquid crystal // Langmuir. 1997. V. 13. P. 2001–2006. https://doi.org/10.1021/la960606u
  19. Dogrul A., Arslan S.A., Tirnaksiz F. Water/oil type microemulsion systems containing lidocaine hydrochloride: in vitro and in vivo evaluation // J. Microencapsul. 2014. V. 31. № 5. P. 448–460. https://doi.org/10.3109/02652048.2013.879926
  20. Moghimipour E., Salimi A., Karami M. Preparation and characterization of dexamethasone microemulsion based on pseudoternary phase diagram // Jundishapur Journal of Natural Pharmaceutical Products. 2013. V. 8. № 3. P. 105–117. https://doi.org/10.17795/jjnpp-9373
  21. Mo J., Milleret G., Nagaraj M. Liquid crystal nanoparticles for commercial drug delivery // Liquid Crystals Reviews. 2017. V. 5. № 2. P. 69–85. https://doi.org/10.1080/21680396.2017.1361874
  22. Dutta R. Effect of sugars on the dynamics of hydrophilic fluorophores confined inside the water pool of anionic reverse micelle: a spectroscopic approach // Journal of Molecular Liquids. 2018. V. 252. P. 225–235. https://doi.org/10.1016/j.molliq.2017.12.137
  23. Simmons B., Agarwal V., Singh M. et al. Phase transition dynamics and microstructure evolution in a crystalline surfactant mesophase using time-dependent small-angle neutron scattering // Langmuir. 2003. V. 19. P. 6329–6332. https://doi.org/10.1021/la0269863
  24. Subramanian N., Ghosal S.K., Asis A. et al. Formulation and physicochemical characterization of microemulsion system using isopropyl myristate, medium-chain glyceride, polysorbate 80 and water // Chem. Pharm. Bull. 2005. V. 53. № 12. 1530–1535. https://doi.org/10.1248/cpb.53.1530
  25. Engelbrecht T.N., Demé B., Dobner B. et al. Study of the influence of the penetration enhancer isopropyl myristate on the nanostructure of stratum corneum lipid model membranes using neutron diffraction and deuterium labelling // Skin Pharmacol. Phys. 2012. V. 25. № 4. P. 200–207. https://doi.org/10.1159/000338538
  26. Арутюнян Л.Г. Влияние аминокислот на критическую концентрацию мицеллообразования поверхностно-активных веществ различной природы // Коллоидный журнал. 2008. Т. 70. № 5. С. 715–717.
  27. Adachi M., Harada M., Shioi A. et al. Extraction of amino acids to microemuision // J. Phys. Chem. 1991. V. 95. P. 7925–7931. https://doi.org/10.1021/j100173a068
  28. Sunaina S.K., Mehta A.K., Ganguli S.V. Small-angle X-ray scattering as an effective tool to understand the structure and rigidity of the reverse micelles with the variation of surfactant // J. Mol. Liq. 2021. V. 326. P. 115302–115310. https://doi.org/10.1016/j.molliq.2021.115302
  29. Carvalho A.L.M., da Silva J.A., Lira A.A.M. et al. Evaluation of microemulsion and lamellar liquid crystalline systems for transdermal zidovudine delivery // J. Pharm. Sci. 2016. V. 105. P. 2188–2193. https://doi.org/10.1016/j.xphs.2016.04.013
  30. Alami E., Levi H., Zana R. Alkanediyl-a,o-bis(dimethylalky1ammonium bromide) surfactants. 2. Structure of the lyotropic mesophases in the presence of water // Langmuir. 1993. V. 9. P. 940 -944. https://doi.org/10.1021/la00028a011
  31. Mol L., Bergenstahl B., Claesson P.M. Forces in dimethyldodecylamine oxide- and dimethyldodecylphosphine oxide–water systems measured with an osmotic stress technique // Langmuir. 1993. V. 9. P. 2926–2932. https://doi.org/10.1021/la00035a033
  32. Murashova N.M., Levchishin S.Yu., Yurtov E.V. Effect of bis-(2-ethylhexyl) phosphoric acid on sodium bis-(2-ethylhexyl) phosphate microemulsion for selective extraction of non-ferrous metals // J. Surfact. Deterg. 2014. V. 17. P. 1249–1258. https://doi.org/10.1007/s11743-014-1598-x
  33. Nave S., Eastoe J., Heenan R.K., Steytler D., Grillo I. What is so special about Aerosol-OT? 2. Microemulsion systems // Langmuir. 2000. V. 16. № 23. P. 8741–8748. https://doi.org/10.1021/la000342i
  34. Nazário, L.M.M., Hatton T.A., Crespo J.P.S.G. Nonionic cosurfactants in AOT reversed micelles: effect on percolation, size, and solubilization site // Langmuir. 1996. V. 12. № 26. P. 6326–6335. https://doi.org/10.1021/la960687u
  35. Kaler E.W., Bennett K.E., Davis T. et al. Toward understanding microemulsion microstructure: a small-angle X-ray scattering study // J. Chem. Phys. 1983. V. 79. № 11. P. 5673–5684. https://doi.org/10.1063/1.445688
  36. Konarev P.V., Volkov V.V., Sokolova A.V. et al. PRIMUS: a windows PC-based system for small-angle scattering data analysis // J. Appl. Crystallogr. 2003. V. 36. P. 1277–1282. https://doi.org/10.1107/S0021889803012779
  37. Castelletto V., Ansari I.A., Hamley I.W. Influence of added clay particles on the structure and rheology of a hexagonal phase formed by an amphiphilic block copolymer in aqueous solution // Macromolecules. 2003. V. 36. № 5. P. 1694–1700. https://doi.org/10.1021/ma021396x
  38. Goodby J.W., Collings P. J., Kato T. et al. Handbook of Liquid Crystals. NewYork: John Wiley & Sons, 2014. V. 1. 945 p.
  39. Саутина Н.В., Рыбакова А.И., Галяметдинов Ю.Г. и др. Влияние межмолекулярных взаимодействий в системе вода/АОТ/изопропилмиристат на высвобождение биологически активных веществ // Журнал физической химии. 2021. Т. 95. № 11. С. 1763–1770.

Supplementary files



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies