DYNAMIC PROPERTIES OF MIXED FULLERENOL/BOVINE SERUM ALBUMIN FILMS ON WATER SURFACE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The properties of a mixed fullerenol (C60(OH)20)/bovine serum albumin film on a water surface depend on the method of film preparation. When the components are adsorbed from a solution of their mixture, the properties of such a film are mainly determined by the protein, which is more surface-active. At the same time, the compression isotherms of such films noticeably deviate from the results obtained for the films of the pure protein. When one of the components is adsorbed on a surface that contains a film of the other component, a synergistic effect is sometimes observed. In this case, the surface pressure and the dynamic surface elasticity modulus are markedly higher than their values for solutions of individual components due to strong interactions between the components and the formation of fullerenol/protein complexes in the surface layer.

About the authors

N. A. ISAKOV

Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia

Email: b.noskov@spbu.ru
Россия, 199034, Санкт-Петербург, Университетская набережная, д. 7/9

B. A. NOSKOV

Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia

Author for correspondence.
Email: b.noskov@spbu.ru
Россия, 199034, Санкт-Петербург, Университетская набережная, д. 7/9

References

  1. Giełdoń A., Witt M. M., Gajewicz A., Puzyn T. Rapid insight into C60 influence on biological functions of proteins // Structural Chemistry. 2017. V. 28. № 6. P. 1775–1788.
  2. Castro E., Garcia A.H., Zavala G., Echegoyen L. Fullerenes in biology and medicine // Journal of Materials Chemistry B. 2017. V. 5. № 32. P. 6523–6535.
  3. Kazemzadeh H., Mozafari M. Fullerene-based delivery systems // Drug Discovery Today. 2019. V. 24. № 3. P. 898–905.
  4. Semenov K.N., Charykov N.A., Postnov V.N. et al. Fullerenols: Physicochemical properties and applications // Progress in Solid State Chemistry. 2016. V. 44. № 2. P. 59–74.
  5. Noskov B.A. Protein conformational transitions at the liquid–gas interface as studied by dilational surface rheology // Advances in Colloid and Interface Science. 2014. V. 206. P. 222–238.
  6. Li S., Zhao X., Mo Y. et al. Human serum albumin interactions with C60 fullerene studied by spectroscopy, small-angle neutron scattering, and molecular dynamics simulations // Journal of Nanoparticle Research. 2013. V. 15. № 7. P. 1769.
  7. Liu S., Sui Y., Guo K. et al. Spectroscopic study on the interaction of pristine C60 and serum albumins in solution // Nanoscale Research Letters. 2012. V. 7. № 1. P. 433.
  8. Fu X., Fang Y., Zhao H., Liu S. Size-dependent binding of pristine fullerene (nC60) nanoparticles to bovine/human serum albumin // Journal of Molecular Structure. 2018. V. 1166. P. 442–447.
  9. Liu S., Wang S., Liu Z. Investigating the size-dependent binding of pristine nC60 to bovine serum albumin by multi-spectroscopic techniques // Materials. 2021. V. 14. № 2. P. 298.
  10. Zhang M.-F., Xu Z.-Q., Ge Y.-S. et al. Binding of fullerol to human serum albumin: spectroscopic and electrochemical approach // Journal of Photochemistry and Photobiology B: Biology. 2012. V. 108. P. 34–43.
  11. Benyamini H., Shulman-Peleg A., Wolfson H.J. et al. Interaction of C 60 –fullerene and carboxyfullerene with proteins: docking and binding site alignment // Bioconjugate Chemistry. 2006. V. 17. № 2. P. 378–386.
  12. Leonis G., Avramopoulos A., Papavasileiou K.D. et al. A comprehensive computational study of the interaction between human serum albumin and fullerenes // Journal of Physical Chemistry B. 2015. V. 119. № 48. P. 14971–14985.
  13. Calvaresi M., Zerbetto F. Baiting proteins with C60 // ACS Nano. 2010. V. 4. № 4. P. 2283–2299.
  14. Bai Y., Wu X., Ouyang P. et al. Surface modification mediates the interaction between fullerene and lysozyme: protein structure and antibacterial activity // Environmental Science: Nano. 2021. V. 8. № 1. P. 76–85.
  15. Noskov B.A., Grigoriev D.O., Latnikova A.V. et al. Impact of globule unfolding on dilational viscoelasticity of β-lactoglobulin adsorption layers // The Journal of Physical Chemistry B. 2009. V. 113. № 40. P. 13398–13404.
  16. Noskov B.A., Bykov A.G., Gochev G. et al. Adsorption layer formation in dispersions of protein aggregates // Advances in Colloid and Interface Science. 2020. V. 276. P. 102086.
  17. Noskov B.A., Mikhailovskaya A.A., Lin S.-Y. et al. Bovine serum albumin unfolding at the air/water interface as studied by dilational surface rheology // Langmuir. 2010. V. 26. № 22. P. 17225–17231.
  18. Campbell R.A., Yanez Arteta M., Angus-Smyth A. et al. Direct impact of nonequilibrium aggregates on the structure and morphology of pdadmac/SDS layers at the air/water interface // Langmuir. 2014. V. 30. № 29. P. 8664–8674.
  19. Lebedev V.T., Kulvelis Y.V., Voronin A.S. et al. Mechanisms of supramolecular ordering of water-soluble derivatives of fullerenes in aqueous media // Fullerenes, Nanotubes and Carbon Nanostructures. 2020. V. 28. № 1. P. 30–39.
  20. Akentiev A.V., Gorniaia S.B., Isakov N.A. et al. Surface properties of fullerenol C60(OH)20 solutions // Journal of Molecular Liquids. 2020. V. 306. P. 112904.

Supplementary files



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies