A Nonlinear Dependence on the Geomagnetic Activity of the Ratio of the Maximum Stream Flux of Charged Particles in a Geostationary Orbit to the Minimum Stream Flux

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new mathematical model was proposed using an ordinary differential equation that analytically
(when the index of geomagnetic activity Kp = const or Kp ≈ const) or numerically (if Kp(t) ≠ const) describes
perpendicular (for a pitch angle of 90°) differential or integral fluxes of relativistic electrons in a geostationary
(geosynchronous) orbit, as well as in any circular orbit in the Earth’s magnetosphere. The model assumes that
the fluxes depend on the local time LT in orbit, the Kp, MacIlvwaine parameter and L, and the perpendicular
differential flux or integral flux of relativistic electrons taken at 0000:00 LT. We use observations of relativistic
(>2 MeV) electron fluxes averaged over the local time hour along the orbit of the GOES spacecraft from 1995
to 2009. The model is compared with these data. Almost perfect agreement was obtained for observations
with the model, where the prediction efficiency of predicting the accuracy of the model at PE = 0.9989. Using
similar data from the GOES 10 allows one to obtain PE = 0.9924. The proposed formulas make it possible to
find, for example, the average value of the perpendicular integral flux of relativistic electrons per day and to
predict the maximum perpendicular integral flux of relativistic electrons in the geostationary orbit approximately
1 day ahead. The nonlinear effect is theoretically predicted in the form of a nonlinear dependence of
the ratio of the maximum perpendicular integral flux to the minimum flux of charged particles in the geostationary
orbit from the Kp-index of geomagnetic activity. Thus far, comparison of the model has been made
with the averaged integral relativistic electron flows fluxes produced for the 0 ≤ Kp < 6 range with a predicted
maximum flow flux ratio of 24.4139 times at Kp = 8 and with the prediction efficiency of predicting the accuracy
of the nonlinear effect PE = 0.8678.

About the authors

S. V. Smolin

Siberian Federal University

Author for correspondence.
Email: smolinsv@inbox.ru
Krasnoyarsk, Russia

References

  1. – Мягкова И.Н., Широкий В.Р., Шугай Ю.С., Баринов О.Г., Владимиров Р.Д., Доленко С.А. Краткосрочное и среднесрочное прогнозирование потоков релятивистских электронов внешнего радиационного пояса Земли методами машинного обучения // Метеорология и гидрология. № 3. С. 47–57. 2021. https://doi.org/10.52002/0130-2906-2021-3-47-57
  2. – Смолин С.В. Влияние питч-углового распределения на плазменные процессы в ночной магнитосфере // Геомагнетизм и аэрономия. Т. 33. № 5. С. 17–25. 1993.
  3. – Смолин С.В. Моделирование питч-угловой диффузии в магнитосфере Земли. Красноярск: редакционно-издательское предприятие “Либра”, 205 с. 1996.
  4. – Смолин С.В. Моделирование питч-углового распределения на дневной стороне магнитосферы Земли // Журн. Сибирского федерального университета. Сер. Математика и физика. Т. 5. № 2. С. 269–275. 2012.
  5. –Смолин С.В. Моделирование потока релятивистских электронов на геостационарной орбите в магнитосфере Земли // Пространство, время и фундаментальные взаимодействия. № 2. С. 75–85. 2018а. https://doi.org/10.17238/issn2226-8812.2018.2.75-85
  6. – Смолин С.В. Простое аналитическое описание для потока релятивистских (>2 МэВ) электронов на геосинхронной орбите / Материалы 12-ой Межд. школы-конф. “Проблемы геокосмоса”. Санкт-Петербург, 8–12 октября 2018 г. Ред. Н.Ю. Бобров, Н.В. Золотова, А.А. Костеров, Т.Б. Яновская. СПб.: Издательство ВВМ. С. 372–378. 2018б.
  7. – Смолин С.В. Аналитическое описание потока протонов кольцевого тока Земли для питч-угла 90 градусов // Пространство, время и фундаментальные взаимодействия. № 2. С. 70–74. 2019. https://doi.org/10.17238/issn2226-8812.2019.2.70-74
  8. –Baker D.N., McPherron R.L., Cayton T.E., Kebesadel R.W. Linear prediction filter analysis of relativistic electron properties at 6.6 RE // J. Geophys. Res. – Space. V. 95. № 9. P. 15 133–15 140. 1990. https://doi.org/10.1029/JA095iA09p15133
  9. –Borovsky J.E., Friedel R.H.W., Denton M.H. Statistically measuring the amount of pitch angle scattering that energetic electrons undergo as they drift across the plasmaspheric drainage plume at geosynchronous orbit // J. Geophys. Res. – Space. V. 119. № 3. P. 1814–1826. 2014. https://doi.org/10.1002/2013JA019310
  10. – Borovsky J.E., Cayton T.E., Denton M.H., Belian R.D., Christensen R.A., Ingraham J.C. The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during high-speed stream-driven storms // J. Geophys. Res. – Space. V. 121. № 6. P. 5449–5488. 2016. https://doi.org/10.1002/2016JA022520
  11. – Efitorov A.O., Myagkova I.N., Dolenko S.A. Prediction of maximum daily relativistic electron flux at geostationary orbit by adaptive methods / Proceedings of the 11th International School and Conference “Problems of Geocosmos”. St. Petersburg, October 3–7, 2016. Eds: V.S. Semenov, M.V. Kholeva, S.V. Apatenkov, N.Yu. Bobrov, A.A. Kosterov, A.A. Samsonov, N.A. Smirnova, T.B. Yanovskaya. SPb.: VVM Publishing. P. 206–212. 2016.
  12. – Fok M.-C., Horne R.B., Meredith N.P., Glauert S.A. Radiation Belt Environment model: Application to space weather nowcasting // J. Geophys. Res. – Space. V. 113. № 3. ID A03S08. 2008. https://doi.org/10.1029/2007JA012558
  13. – Kalegaev V., Kaportseva K., Myagkova I., Shugay Yu., Vlasova N., Barinova W., Dolenko S., Eremeev V., Shiryaev A. Medium-term prediction of the fluence of relativistic electrons in geostationary orbit using solar wind streams forecast based on solar observations // Adv. Space Res. V. 70. 2022. https://doi.org/10.1016/j.asr.2022.08.033
  14. – Khazanov G.V., Gamayunov K.V., Jordanova V.K. Self-consistent model of magnetospheric ring current and electromagnetic ion cyclotron waves: The 2–7 May 1998 storm // J. Geophys. Res. – Space. V. 108. № 12. ID 1419. 2003. https://doi.org/10.1029/2003JA009856
  15. – Li X., Temerin M., Baker D.N., Reeves G.D., Larson D. Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements // Geophys. Res. Lett. V. 28. № 9. P. 1887–1890. 2001. https://doi.org/10.1029/2000GL012681
  16. – Li X. Variations of 0.7-6.0 MeV electrons at geosynchronous orbit as a function of solar wind // Space Weather. V. 2. № 3. ID S03006. 2004. https://doi.org/10.1029/2003SW000017
  17. – Ling A.G., Ginet G.P., Hilmer R.V., Perry K.L. A neural network-based geosynchronous relativistic electron flux forecasting model // Space Weather. V. 8. № 9. ID S09003. 2010. https://doi.org/10.1029/2010SW000576
  18. – Lyatsky W., Khazanov G.V. A predictive model for relativistic electrons at geostationary orbit // Geophys. Res. Lett. V. 35. № 15. ID L15108. 2008. https://doi.org/10.1029/2008GL034688
  19. – Nishida A. Geomagnetic diagnosis of the magnetosphere. N.Y.: Springer-Verlag, 301 p. 1978.
  20. – O’Brien T.P. SEAES-GEO: A spacecraft environmental anomalies expert system for geosynchronous orbit // Space Weather. V. 7. № 9. ID S09003. 2009. https://doi.org/10.1029/2009SW000473
  21. – Pinto V.A., Bortnik J., Moya P.S., Lyons L.R., Sibeck D.G., Kanekal S.G., Spence H.E., Baker D.N. Radial response of outer radiation belt relativistic electrons during enhancement events at geostationary orbit // J. Geophys. Res. – Space. V. 125. № 5. ID e2019JA027660. 2020. https://doi.org/10.1029/2019JA027660
  22. – Smolin S.V. Modeling the pitch angle distribution on the nightside of the Earth’s magnetosphere // Geomagn. Aeronomy. V. 55. № 2. P. 166–173. 2015. https://doi.org/10.1134/S0016793215020152
  23. – Smolin S.V. Ring current proton dynamics driven by wave-particle interactions during a nonstorm period // J. Sib. Fed. Univ. Math. Phys. V. 14. № 1. P. 98–104. 2021. https://doi.org/10.17516/1997-1397-2021-14-1-98-104
  24. – Su Y.-J., Quinn J.M., Johnston W.R., McCollough J.P., Starks M.J. Specification of >2 MeV electron flux as a function of local time and geomagnetic activity at geosynchronous orbit // Space Weather. V. 12. № 7. P. 470–486. 2014. https://doi.org/10.1002/2014SW001069
  25. – Turner D.L., Li X. Quantitative forecast of relativistic electron flux at geosynchronous orbit based on low-energy electron flux // Space Weather. V. 6. № 5. ID S05005. 2008. https://doi.org/ 2008.https://doi.org/10.1029/2007SW000354
  26. – Turner D.L., Li X., Burin des Roziers E., Monk S. An improved forecast system for relativistic electrons at geosynchronous orbit // Space Weather. V. 9. № 6. ID S06003. 2011. https://doi.org/10.1029/2010SW000647
  27. – Ukhorskiy A.Y., Sitnov M.I., Sharma A.S., Anderson B.J., Ohtani S., Lui A.T.Y. Data-derived forecasting model for relativistic electron intensity at geosynchronous orbit // Geophys. Res. Lett. V. 31. № 9. ID L09806. 2004. https://doi.org/10.1029/2004GL019616

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (142KB)
3.

Download (92KB)

Copyright (c) 2023 С.В. Смолин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies