GEOCHEMISTRY OF HIGH-PHOSPHORUS ZIRCON FROM THE UPPER RIPHEAN METASANDSTONES OF THE SOUTHERN TIMAN

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A detailed mineralogical and geochemical study (using the EPMA and SIMS methods) of zircon from metasandstones of the Dzhezhim Formation in the South Timan made it possible to establish an anomalously high content of phosphorus in it (up to 10.27 wt % P2O5 according to EPMA data), which correlates with an increased content of other non-formula admixture elements, the main of which are Y, REE, Ca, Fe, Al, Ti, Sr, Ba, Th, U. Of particular note is the significant amount of volatile components in zircon (up to 0.49 wt % water and up to 0.26 wt.% fluorine, determined by the method SIMS). The total content of non-formula admixture elements can exceed 20 wt %, which is a characteristic feature of the composition of zircon exposed to fluid or formed as a result of hydrothermal-metasomatic processes. The main mechanism for the incorporation of admixture elements into the composition of zircon was xenotime-type heterovalent isomorphism, when the presence of quinquevalent phosphorus is compensated by the participation of trivalent Y and REE. Of subordinate importance was the isomorphism scheme, which ensures the entry of hydrogen (water). The areas of zircon enriched in phosphorus and other adulterants are confined to the edge of the grains, or to systems of scissures and fluid-permeable areas. Granitoids served as a possible source of zircon, and the process of transformation of its composition (recrystallization and enrichment of local areas, less often whole grains) probably occurred already in the sandstone sequence, during metamorphism and/or hydrothermal process.

About the authors

O. V. Grakova

Institute of Geology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences

Email: ovgrakova@geo.komisc.ru
Syktyvkar, 167982 Russia Republic of Komi, Syktyvkar, Pervomayskaya, 54

S. G. Skublov

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences; Saint Petersburg Mining University

Email: ovgrakova@geo.komisc.ru
Saint-Petersburg, 199034 Russia; Saint-Petersburg, 199106 Russia

N. Yu. Nikulova

Institute of Geology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences

Email: ovgrakova@geo.komisc.ru
Syktyvkar, 167982 Russia Republic of Komi, Syktyvkar, Pervomayskaya, 54

O. L. Galankina

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences

Author for correspondence.
Email: ovgrakova@geo.komisc.ru
Saint-Petersburg, 199034 Russia

References

  1. Гракова О.В. (2011) Акцессорный ильменорутил алмазсодержащих среднедевонских пород Южного Тимана. Вестник Института геологии Коми научного центра Уральского отделения РАН. 10(202), 11-13.
  2. Гракова О.В. (2014) Видовой состав, химические и типоморфные особенности акцессорных минералов девонских алмазсодержащих отложений Южного и Среднего Тимана. Вестник Института геологии Коми научного центра Уральского отделения РАН. 3(231), 3-9.
  3. Кузнецов Н.Б., Натапов Л.М., Белоусова Е.А., Гриффин У.Л., О’Рейлли С., Куликова К.В., Соболева А.А., Удоратина О.В. (2010) Первые результаты U/Pb-датирования и изотопно-геохимического изучения детритных цирконов из позднедокембрийских песчаников Южного Тимана (увал Джежим-Парма). ДАН. 435(6), 798-805.
  4. Макеев А.Б., Скублов С.Г. (2016) Иттриево-редкоземельные цирконы Тимана: геохимия и промышленное значение. Геохимия. (9), 821-828.
  5. Makeyev A.B., Skublov S.G. (2016) Y-REE-RICH zircons of the Timan region: geochemistry and economic significance. Geochem. Int. 54(9), 788-794.
  6. Никулова Н.Ю. (2017) Состав и условия образования терригенных пород верхнего рифея (возвышенность Джежимпарма, Южный Тиман). Известия высших учебных заведений. Геология и разведка. (4), 27-35.
  7. Оловянишников В.Г. (1998) Верхний докембрий Тимана и полуострова Канин. Екатеринбург: УрО РАН, 163 с.
  8. Румянцева Н.А., Скублов С.Г., Ванштейн Б.Г., Ли С.-Х., Ли Ч.-Л. (2022) Циркон из габброидов хребта Шака (Южная Атлантика): U-Pb возраст, соотношение изотопов кислорода и редкоэлементный состав. Записки РМО. 151(1), 44-73.
  9. Скублов С.Г., Гаврильчик А.К., Березин А.В. (2022) Геохимия разновидностей берилла: сравнительный анализ и визуализация аналитических данных методами главных компонент (PCA) и стохастического вложения соседей с t-распределением (t-SNE). Записки Горного института. 255, 455-469.
  10. Скублов С.Г., Лобач-Жученко С.Б., Гусева Н.С., Гембицкая И.М., Толмачева Е.В. (2009) Распределение редкоземельных и редких элементов в цирконах из миаскитовых лампроитов Панозерского комплекса Центральной Карелии. Геохимия. (9), 958-971.
  11. Skublov S.G., Lobach-Zhuchenko S.B., Guseva N.S., Gembitskaya I.M., Tolmacheva E.V. (2009) Rare earth and trace element distribution in zircons from miaskite lamproites of the Panozero complex, Central Karelia. Geochem. Int. 47(9), 901-913.
  12. Скублов С.Г., Марин Ю.Б., Галанкина О.Л., Симакин С.Г., Мыскова Т.А., Астафьев Б.Ю. (2011) Первая находка аномально (Y+REE)-обогащенных цирконов в породах Балтийского щита. ДАН. 441(6), 792-799.
  13. Тиманский кряж. Литология и стратиграфия, геофизическая характеристика Земной коры, тектоника, минерально-сырьевые ресурсы (2010) Т. 2. Ухта: УГТУ, 437 с.
  14. Федотова А.А., Бибикова Е.В., Симакин С.Г. (2008) Геохимия циркона (данные ионного микрозонда) как индикатор генезиса минерала при геохронологических исследованиях. Геохимия (9), 980-997.
  15. Fedotova A.A., Bibikova E.V., Simakin S.G. (2008) Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies. Geochem. Int. 46(9), 912-927.
  16. Щербаков Э.С., Плякин А.М., Битков П.П. (2001) Условия образования среднедевонских алмазоносных отложений Тимана. Алмазы и алмазоносность Тимано-Уральского региона: Материалы Всероссийского совещания. Сыктывкар: Геопринт, 39-40.
  17. Belousova E.A., Griffin W.L., O’Reilly S.Y., Fisher N.L. (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol. 143(5), 602-622.
  18. Bouvier A.S., Ushikubo T., Kita N.T., Cavosie A.J., Kozdon R., Valley J.W. (2012) Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids. Contrib. Mineral. Petrol. 163(5), 745-768.
  19. Breiter K., Förster H.J., Škoda R. (2006) Extreme P-, Bi-, Nb-, Sc-, U-and F-rich zircon from fractionated perphosphorous granites: The peraluminous Podlesí granite system, Czech Republic. Lithos. 88(1–4), 15-34.
  20. Davis D.W., Krogh T.E., Williams I.S. (2003) Historical development of zircon geochronology. Rev. Mineral. Geochem. 53(1), 145-181.
  21. De Hoog J.C.M., Lissenberg C.J., Brooker R.A., Hinton R., Trail D., Hellebrand E. (2014) Hydrogen incorporation and charge balance in natural zircon. Geochim. Cosmochim. Acta. 141, 472-486.
  22. Deer W.A., Howie R.A., Zussman J. (1997) Rock-forming minerals. Orthosilicates, vol. 1A. Geol. Soc. London. 418-442.
  23. Finch R.J., Hanchar J.M. (2003) Structure and chemistry of zircon and zircon-group minerals. Rev. Mineral. Geochem. 53(1), 1-25.
  24. Finch R.J., Hanchar J.M., Hoskin P.W., Burns P.C. (2001) Rare-earth elements in synthetic zircon: Part 2. A single-crystal X-ray study of xenotime substitution. Amer. Mineral. 86(5–6), 681-689.
  25. Förster H.J. (2006) Composition and origin of intermediate solid solutions in the system thorite–xenotime–zircon–coffinite. Lithos. 88(1–4), 35-55.
  26. Fu B., Page F.Z., Cavosie A.J., Fournelle J., Kita N.T., Lackey J.S., Wilde S.A., Valley J.W. (2008) Ti-in-zircon thermometry: Applications and limitations. Contrib. Mineral. Petrol. 156, 197-215.
  27. Geisler T., Schaltegger U., Tomaschek F. (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements. 3, 43-50.
  28. Geisler T., Schleicher H. (2000) Improved U–Th–total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon. Chem. Geol. 163, 269-285.
  29. Griffin W.L., Pearson N.J., Belousova E., Jackson S.V., Van Achterbergh E., O’Reilly S.Y., Shee S.R. (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta. 64(1), 133-147.
  30. Grimes C.B., John B.E., Cheadle M.J., Mazdab F.K., Wooden J.L., Swapp S., Schwartz J.J. (2009) On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib. Mineral. Petrol. 158(6), 757-783.
  31. Hanchar J.M., Finch R.J., Hoskin P.W., Watson E.B., Cherniak D.J., Mariano A.N. (2001) Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping. Amer. Mineral. 86(5–6), 667-680.
  32. Harley S.L., Kelly N.M. (2007) Zircon tiny but timely. Elements. 3(1), 13-18.
  33. Hata S. (1938) Xenotime and a variety of zircon from Iisaka. Sc. P. of the Inst. of Phys. Chem. Res. 34, 619-622.
  34. Hinton R.W., Upton B.G.J. (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim. Cosmochim. Acta. 55, 3287-3302.
  35. Horie K., Hidaka H., Gauthier-Lafaye F. (2006) Elemental distribution in zircon: alteration and radiation-damage effects. Phys. Chem. of the Earth. Parts A/B/C. 31(10–14), 587-592.
  36. Hoskin P.W. (2000) Patterns of chaos: fractal statistics and the oscillatory chemistry of zircon. Geochim. Cosmochim. Acta. 64(11), 1905-1923.
  37. Hoskin P.W. (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim. Cosmochim. Acta. 69(3), 637-648.
  38. Hoskin P.W., Ireland T.R. (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology. 28(7), 627-630.
  39. Hoskin P.W., Schaltegger U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 53(1), 27-62.
  40. Huang X.L., Wang R.C., Chen X.M., Liu C.S. (2000) Study on phosphorus-rich zircon from Yashan topaz–lepidolite granite, Jiangxi province, South China. Acta Miner. Sinica. 20, 22-27.
  41. Kemp A.I.S., Hawkesworth C.J., Foster G.L., Paterson B.A., Woodhead J.D., Hergt J.M., Gray C.M., Whitehouse M.J. (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science. 315(5814), 980-983.
  42. Kimura K., Hironaka Y. (1936) Chemical investigations of Japanese minerals containing rarer elements: XXIII. Yamagutilite, a phosphorus-bearing variety of zircon, found at Yamaguli Village, Nagano Prefecture. J. Chem. Soc. Japan. 57, 1195-1199.
  43. Kirkland C.L., Smithies R.H., Taylor R.J.M., Evans N., McDonald B. (2015) Zircon Th/U ratios in magmatic environs. Lithos. 212, 397-414.
  44. Kudryashov N.M., Skublov S.G., Galankina O.L., Udoratina O.V., Voloshin A.V. (2020) Abnormally high-hafnium zircon from rare-metal pegmatites of the Vasin-Mylk deposit (the northeastern part of the Kola Peninsula). Geochem. Int. 80(3), 125489.
  45. Levashova E.V., Mamykina M.E., Skublov S.G., Li Q.-L., Li X.-H. (2023) Geochemistry of zircons (TE, REE, Oxygen isotope system) from leucogranites of Belokurikha massif, Gorny Altai. Geochem. Int.
  46. Levskii L.K., Skublov S.G., Gembitskaya I.M. (2009) Isotopic-geochemical study of zircons from metabasites of the Kontokki dike complex: Age of regional metamorphism in the Kostomuksha structure. Petrology. 17(7), 669-683.
  47. McDonough W.F., Sun S.S. (1995) The composition of the Earth. Chem. Geol. 120, 223-253.
  48. Mojzsis S.J., Harrison T.M., Pidgeon R.T. (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature. 409(6817), 178-181.
  49. Möller A., O’Brien P.J., Kennedy A., Kröner A. (2003) The use and abuse of Th-U ratios in the interpretation of zircon. EGS-AGU-EUG Joint Assembly. 12113.
  50. Raimbault L. (1998) Composition of complex lepidolite-type granitic pegmatites and of constituent columbite-tantalite, Chedeville, Massif Central, France. Can. Mineral. 36(2), 563-583.
  51. Raimbault L., Burnol L. (1998) The Richemont rhyolite dyke, Massif Central, France; a subvolcanic equivalent of rare-metal granites. Can. Mineral. 36(2), 265-282.
  52. Rayner N., Stern R.A., Carr S.D. (2005) Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. Contrib. Mineral. Petrol. 148(6), 721-734.
  53. Skublov S.G., Berezin A.V., Li X.-H., Li Q.-L., Salimgaraeva L.I., Travin V.V., Rezvukhin D.I. (2020) Zircons from a pegmatite cutting eclogite (Gridino, Belomorian Mobile Belt): U-Pb-O and trace element constraints on eclogite metamorphism and fluid activity. Geosciences. 10(5), 197.
  54. Skublov S.G., Rumyantseva N.A., Li Q., Vanshtein B.G., Rezvukhin D.I., Li X. (2022) Zircon xenocrysts from the Shaka Ridge record ancient continental crust: New U-Pb geochronological and oxygen isotopic data. J. Earth Sci. 33(1), 5-16.
  55. Speer J.A. (1980) Zircon. Rev. Mineral. Geochem. 5(1), 67-112.
  56. Trail D., Mojzsis S.J., Harrison T.M., Schmitt A.K., Watson E.B., Young E.D. (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem., Geoph., Geosyst. 8, Q06014.
  57. Ushikubo T., Kita N.T., Cavosie A.J., Wilde S.A., Rudnick R.L., Valley J.W. (2008) Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth’s earliest crust. Earth and Planet. Sci. Lett. 272(3–4), 666-676.
  58. Wang S.J., Li S.G., An S.C., Hou Z.H. (2012) A granulite record of multistage metamorphism and REE behavior in the Dabie orogen: constraints from zircon and rock-forming minerals. Lithos. 136, 109-125.
  59. Watson E.B., Wark D.A., Thomas J.B. (2006) Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151, 413-433.
  60. Xie L., Wang R., Chen X., Qiu J., Wang D. (2005) Th-rich zircon from peralka line A-type granite: Mineralogical features and petrological implications. Chin. Sci. Bull. 50(8), 809-817.
  61. Yakymchuk C., Kirkland C.L., Clark C. (2018) Th/U ratios in metamorphic zircon. J. Metamorph. Geol. 36(6), 715-737.
  62. Yang W., Lin Y., Hao J., Zhang J., Hu S., Ni H. (2016) Phosphorus-controlled trace element distribution in zircon revealed by NanoSIMS. Contrib. Mineral. Petrol. 171(3), 28.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (911KB)
4.

Download (1MB)
5.

Download (219KB)
6.

Download (98KB)
7.

Download (28KB)
8.

Download (354KB)
9.

Download (212KB)

Copyright (c) 2023 О.В. Гракова, С.Г. Скублов, Н.Ю. Никулова, О.Л. Галанкина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies