Localization of Chromosomal Regions Determining Magnesium and Calcium Content in Rice Varieties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

There has been a wide variation in the content of micro and macro elements, both between subspecies and within rice species and varieties. Magnesium as a cofactor is involved in more than 300 enzymatic reactions and is necessary for growth and development of both plants and humans. It affects carbohydrate and protein metabolism. Both adenosine triphosphate (ATP) production, nucleotide and glucose synthesis, and lipid oxidation regulation depend on its concentration. Calcium is also essential for the formation of cell wall structure and cell division. High concentrations of calcium change the composition and condition of red blood cell membranes and cell morphological characteristics. At the same time the variability in signs of domestic rice varieties has not yet been studied. There have been no studies on the localization of chromosomal regions responsible for the formation of traits of magnesium and calcium content in rice samples. Wide variation in calcium content (0.07–2.33%) and magnesium content in rice samples (2–14%) was established. Contrasting groups of varieties and sources by signs were identified. A search for chromosomal regions determining the quality of domestic samples was carried out using 58 molecular markers distributed across the rice genome (SSR). The data on phenotyping of native rice varieties by quality signs were used to divide them into groups with maximum trait value (1) and minimum trait value (2). The relationship between phenotypic manifestation of the trait and the genotype of the sample was established: by means of analysis of variance. Eight loci determining magnesium and calcium content in native rice varieties – were identified. The loci determining magnesium content are located on chromosomes 5, 6, 7, 8. Four loci associated with calcium content were identified two on the second chromosome and one each on the eighth and fifth chromosomes. On the fifth chromosome, it is located (RM 13, 28.6 cM) in close proximity to the RM 405 marker region (28 cM), which is connected with magnesium content.

About the authors

J. K. Goncharova

Federal Scientific Center of Rice; “Aratai” LLC, Participant of Skolkovo Innovation Center

Author for correspondence.
Email: yuliya_goncharova_20@mail.ru
Russia, 350921, Krasnodarskiy krai, p. Belozerny; Russia, 143026, Moscow

V. V. Simonova

Federal Scientific Center of Rice

Email: yuliya_goncharova_20@mail.ru
Russia, 350921, Krasnodarskiy krai, p. Belozerny

S. V. Goncharov

Trubilin Kuban State Agrarian University

Email: yuliya_goncharova_20@mail.ru
Russia, 350044, Krasnodar

N. A. Ochkas

“Aratai” LLC, Participant of Skolkovo Innovation Center

Email: yuliya_goncharova_20@mail.ru
Russia, 143026, Moscow

References

  1. Гончарова Ю.К., Харитонов Е.М., Малюченко Е.А., Бушман Н.Ю. Молекулярное маркирование признаков, определяющих качество зерна у российских сортов риса // Вавил. журн. генетики и селекции. 2018. Т. 26. № 1. С. 79–87. https://doi.org/10.18699/VJ18.334
  2. Фотев Ю.В., Пивоваров В.Ф., Артемьева А.М. и др. Концепция создания Российской национальной системы функциональных продуктов питания // Вавил. журн. генетики и селекции. 2018. Т. 22. № 7. С. 776–783. https://doi.org/10.18699/VJ18.421
  3. Харитонов Е.М., Гончарова Ю.К. Взаимосвязь между устойчивостью к высоким температурам и стабильностью урожаев у риса // Аграрная Россия. 2008. Т. 3. № 1. С. 2–24. https://doi.org/10.30906/1999-5636-2008-3-22-24
  4. Харитонов Е.М., Гончарова Ю.К., Иванов А.Н. Применение кластерного анализа для разделения сортов риса по реакции на изменение условий среды // Вестник Росс. акад. с.-х. наук. 2014. № 6. С. 32–35.
  5. Liu X.S., Feng S.J., Zhang B.Q. et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice // BMC Plant Biol. 2019. № 19. P. 283. https://doi.org/10.1186/s12870-019-1899-3
  6. Fan F., Long W., Liu M. et al. Quantitative trait locus mapping of the combining ability for yield-related traits in wild rice Oryza longistaminata // J. Agric. Food Chem. 2019. № 67. P. 8766–8772. https://doi.org/10.1021/ acs.jafc.9b02224
  7. Iseri L.T., Allen B.J., Ginkel M.L., Brodsky M.A. Ionic biology and ionic medicine in cardiac arrhythmias with particular reference to magnesium // Am. Heart J. 1992. V. 123. № 5. P. 1404–1409. https://doi.org/10.1016/0002-8703(92)91059-a
  8. Mubagwa K., Gwanyanya A., Zakharov S., Macianskiene R. Regulation of cation channels in cardiac and smooth muscle cells by intracellular magnesium // Arch. Biochem. Biophys. 2007. V. 458. № 1. P. 73–89.https://doi.org/10.1016/j.abb.2006.10.014
  9. Qu X., Jin F., Hao Y. et al. Magnesium and the risk of cardiovascular events: A meta-analysis of prospective cohort studies // PLoS One. 2013. V. 8. № 3. https://doi.org/10.1371/journal.pone.0057720
  10. Сыркин А.Л., Салагаев Г.И., Сыркина Е.А., Лысенко А.В. Преимущества оротата магния для коррекции магний-дефицитных состояний у больных с различными формами нарушений ритма сердца // Кардиология и сердечно-сосудистая хирургия. 2019. Т. 12. № 4. С. 308–313.
  11. Sheehan J.P., Seelig M.S. Interactions of magnesium and potassium in the pathogenesis of cardiovascular disease // Magnesium. 1984. V. 3. № 4–6. P. 301–314. Corpus ID: 2095870.
  12. Leor J., Kloner R.A. An experimental model examining the role of magnesium in the therapy of acute myocardial infarction // Am. J. Cardiology. 1995. V. 75. № 17. P. 1292–1293. https://doi.org/10.1016/s0002-9149(99)80787-5
  13. Paravicini T.M., Chubanov V., Gudermann T. TRPM7: A unique channel involved in magnesium homeostasis // Intern. J. Biochem. Cell Biol. 2012. V. 44. № 8. P. 1381–1384. https://doi.org/10.1016/j.biocel.2012.05.010
  14. Whang R., Welt L.A. Observations in experimental magnesium depletion // J. Clin. Investigation. 1963. V. 42. № 3. P. 305–313. https://doi.org/10.1172/JCI104717
  15. Solomon R. The relationship between disorders of K+ and Mg2+ homeostasis // Semin Nephrol. 1987. V. 7. № 1. P. 253–262.
  16. Weiner I.D., Wingo C.S. Hypokalemia: Consequences, causes, and correction // J. Am. Soc. Nephrology. 1997. V. 8. № 7. P. 1179–1188. https://doi.org/10.1681/ASN.V871179
  17. Сюсин И.В. Влияние ионов Са2+ на фосфолипидный состав, состояние и морфологические характеристики эритроцитов: Дисс. … канд. биол. наук. Саранск, 2021. 123 с.
  18. Wong N.L., Sutton R.A., Navichak V. et al. Enhanced distal absorption of potassiumby magnesium-deficientrats // Clin. Science. 1985. V. 69. № 5. P. 625–630. https://doi.org/10.1042/cs0690625
  19. Shechter M. Magnesium and cardiovascular system // Magnesium Res. 2010. V. 23. № 2. P. 60–72. https://doi.org/10.1684/mrh.2010.0202
  20. Громова О.А., Торшин И.Ю., Калачева А.Г. и др. О некоторых ролях калия и магния в терапевтической практике // Лечебное дело. 2019. Т. 2. С. 21–31. https://doi.org/10.24411/ 2071-5315-2019-12108
  21. Song Y., He K., Levitan E.B. et al. Effects of oral magnesium supplementation on glycaemic control in Type 2 diabetes: A meta-analysis of randomized double-blind controlled trials // Diabet Medicine. 2006. V. 23. № 10. P. 1050–1056. https://doi.org/10.1111/j.1464-5491.2006.01852.x
  22. Ohira T., Peacock J.M., Iso H. et al. Serum and dietary magnesium and risk of ischemic stroke: the atherosclerosis risk in communities study // Am. J. Epidemiology. 2009. V. 169. № 12. P. 1437–1444. https://doi.org/10.1093/aje/kwp071
  23. Garcia-Oliveira A.L., Tan L., Fu Y., Sun C. Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain // J. Integrative Plant Biol. 2009. V. 51. № 1. P. 84–92. https://doi.org/10.1111/j.1744-7909.2008.00730.x
  24. Mahender A., Anandan A., Kumar S. et al. Rice grain nutritional traits and their enhancement using relevant genes and QTLs through advanced approaches // Springer Plus. 2016. V. 5. № 1. P. 2086. https://doi.org/10.1186/s40064-016-3744-6
  25. James C.R., Huynh B.L., Welch R.M. et al. Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content // Euphytica. 2007. V. 154. № 3. P. 289–294. https://doi.org/10.1007/s10681-006-9211-7
  26. Anuradha K., Agarwal S., Rao Y.V. et al. Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar * Swarna RILs // Gene. 2012. V. 508. № 2. P. 233–240. https://doi.org/10.1016/j.gene.2012.07.054
  27. Kaiyang L., Lanzhi L., Xingfei Z. et al. Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains // J. Genet. 2008. V. 87. № 3. P. 305–310. https://doi.org/10.1007/s12041-008-0049-8
  28. Zhang M.W., Guo B.J., Peng Z.M. Genetic effects on Fe, Zn, Mn and P contents in Indica black pericarp rice and their genetic correlations with grain characteristics // Euphytica. 2004. V. 135. № 3. P. 315–323.
  29. Гончарова Ю.К., Гончаров С.В. Изучение и использование дикорастущего африканского Oryza longistaminata в качестве донора признаков аллогамии в селекции культурного риса на гетерозис // В сб. тезисов межд. конф. “Генетические ресурсы культурных растений. Проблемы мобилизации, инвентаризации, сохранения и изучения генофонда важнейших сельскохозяйственных культур для решения приоритетных задач селекции”, 13–16 ноября 2001 г. СПб., 2001. С. 253–255.
  30. Liu X., Fan F., Liu M. Quantitative trait loci mapping of mineral element contents in brown rice using backcross inbred lines derived from Oryza longistaminata // Front. Plant Sci. 2020. V. 11. P. 1229. https://doi.org/10.3389/fpls.2020.01229
  31. Liu X.S., Feng S.J., Zhang B.Q. et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice // BMC Plant Biol. 2019. V. 19. P. 283. https://doi.org/10.1186/s12870-019-1899-3
  32. Cai H., Huang S., Che J. et al. The tonoplast-localized transporter OsHMA3 plays an important role in maintaining Zn homeostasis in rice // J. Exp. Bot. 2019. V. 70. P. 2717–2725. https://doi.org/10.1093/jxb/erz091
  33. Wu Q., Liu C., Wang Z. et al. Zinc regulation of iron uptake and translocation in rice (Oryza sativa L.): Implication from stable iron isotopes and transporter genes // Environ. Pollut. 2022. V. 297. https://doi.org/10.1016/j.envpol.2022.118818
  34. D’Amato R., Fontanella M. C., Falcinelli B. et al. Selenium biofortification in rice (Oryza sativa L.) sprouting: Effects on Se yield and nutritional traits with focus on phenolic acid profile // J. Agric. Food Chem. 2018. V. 66. P. 4082–4090. https://doi.org/10.1021/acsjafc.8b00127
  35. He J., Rossner N., Hoang M. et al. Transport, functions, and interaction of calcium and manganese in plant organellar compartments // Plant Physiol. 2021. V. 187. P. 1940–1972. https://doi.org/10.1093/plphys/kiab122
  36. Adeva C., Yun Y.-T., Shim K.-C. et al. QTL mapping of mineral element contents in rice using introgression lines derived from an interspecific cross // Agronomy. 2023. V. 13. P. 76. https://doi.org/10.3390/agronomy13010076
  37. Гончарова Ю.К., Харитонов Е.М. Генетический контроль признаков, связанных с усвоением фосфора у сортов риса (Oryza sativa L.) // Вавил. журн. генетики и селекции. 2015. Т. 19. № 2. С. 197–204. https://doi.org/10.18699/VJ15.025
  38. Fan F., Long W., Liu M. et al. Quantitative trait locus mapping of the combining ability for yield-related traits in wild rice Oryza longistaminata // J. Agric. Food Chem. 2019. V. 67. P. 8766–8772. https://doi.org/10.1021/acs.jafc.9b02224
  39. Jin J., Long W., Wang L. et al. QTL mapping of seed vigor of backcross inbred lines derived from Oryza longistaminata under artificial aging // Front. Plant Sci. 2018. № 9. P. 1909. https://doi.org/10.3389/fpls.2018.01909
  40. Goncharova Yu.K., Goncharov S.V., Chicharova E.E. Localization of chromosome regions controlling high photosynthetic potential in Russian rice cultivars // Russ. J. Genet. 2018. V. 54. № 7. P. 796–804. https://doi.org/10.1134/S0016675818070032
  41. Butardo V.M., Jr., Sreenivasulu N., Juliano B.O. Improving rice grain quality: State-of-the-art and future prospects // Methods Mol. Biol. 2019. V. 19. P. 55. https://doi.org/10.1007/978-1-4939-8914-0_2
  42. Birla D.S., Kapil Malik, Manish Sainger et al. Progress and challenges in improving the nutritional quality of rice (Oryza sativa L.) // Crit. Rev. Food Sci. Nutr. 2017. V. 57. P. 2455–2481. https://doi.org/10.1080/10408398.2015.1084992
  43. Zhang L., Ma B., Bian Z. et al. Grain size selection using novel functional markers targeting 14 genes in rice // Rice. 2020. V. 13. P. 63. https://doi.org/10.1186/ s12284-020-00427-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (149KB)
3.

Download (151KB)
4.

Download (57KB)
5.

Download (48KB)
6.

Download (58KB)
7.

Download (68KB)

Copyright (c) 2023 Ю.К. Гончарова, В.В. Симонова, С.В. Гончаров, Н.А. Очкас

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies