Genetic Diversity of Juniperus communis L. in Eurasia and Alaska, Inferred from Nuclear Microsatellites Markers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structure of genetic variation of the common juniper (Juniperus communis L.), a widespread wind-pollinated golarctic shrub of Cupressaceae was surveyed. We used 7 microsatellite markers including three new to genotype samples from 23 Eurasian populations and one from North America (Alaska). The geographical patterns are interpreted jointly with our previously available chloroplast DNA data. High genetic diversity was revealed with highest values in the same northern populations (Sweden, Estonia, Mezen, Polar Urals, Yamal, Kolyma, as well as in the Alps) as previously identified at cpDNA analysis. Nuclear markers exhibited a lower level interpopulation differentiation (FST = 9.8%) than chloroplast markers (FST = 76%). Bayesian cluster analysis showed that the optimal number of genetic groups (K) was two. All the 24 populations of J. communis were divided into the East group (north-east and Far East of Russia, Alaska and Himalayan) and the West group (Europe, Ural and Siberia). In the Alpine and Mountain Shoria populations, genotypes from different genetic groups are combined.

About the authors

E. V. Hantemirova

Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy
of Sciences

Author for correspondence.
Email: hantemirova@ipae.uran.ru
Russia, 620144, Ekaterinburg

V. A. Bessonova

Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy
of Sciences

Email: hantemirova@ipae.uran.ru
Russia, 620144, Ekaterinburg

References

  1. Petit R.J., Aguinagalde I., de Beaulieu J.L. et al. Glacial refugia: Hotspots but not melting pots of genetic diversity // Science. 2003. V. 300. P. 1563–1565. https://doi.org/10.1126/science.1083264
  2. Tribsch A., Stuessy T. Evolution and phylogeography of arctic and alpine plants in Europe: Introduction // Taxon. 2003. V. 52. P. 415–416. https://doi.org/10.2307/3647443
  3. Tarasov P.E., Volkova V.S., Webb T. et al. Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia // J. Biogeogr. 2000. V. 27. P. 609–620. https://doi.org/10.1046/j.1365-2699.2000.00429.x
  4. Maliouchenko O., Palmé A.E., Buonamici A. et al. Comparative phylogeography of two European birch species, Betula pendula and B. pubescens, with high level of haplotype sharing // J. Biogeogr. 2007. V. 34. P. 1601–1610. https://doi.org/10.1111/j.1365-2699.2007.01729.x
  5. Gonçalves A., Flores-Félix J.D., Coutinho P. et al. Zimbro (Juniperus communis L.) as a promising source of bioactive compounds and biomedical activities: a review on recent trends // Int. J. Mol. Sci. 2022. V. 23. № 6. P. 3197. https://doi.org/10.3390/ijms23063197
  6. Farjon A.A. World Checklist and Bibliography of Conifers. 2nd ed. England, The Royal Bot. Gardens: Kew, 2001. 309 p.
  7. Clifton S.J., Ward L.K., Ranner D.S. The status of juniper Juniperus communis L. in north-east England // Biol. Conserv. 1997. V. 79. P. 67–77. https://doi.org/10.1016/S0006-3207(96)00101-2
  8. McBride A. The status of common juniper (Juniperus communis L.) in the Scottish borders // Scottish Forestry. 1998. V. 52. P. 178–182.
  9. Oostermeijer J.G.B., Knegt B. Genetic population structure of wind-pollinated dioecious shrub Juniperus communis in fragmented Dutch heathlands // Plant Species Biol. 2004. V. 19. P. 175–184. https://doi.org/10.1111/j.1442-1984.2004.00113.x
  10. Filipowicz N., Piotrowski A., Ochocka R., Aszemborska M. The phytochemical and genetic survey of common and dwarf juniper (Juniperus communis and Juniperus nana) identifies chemical races and close taxonomic identity of the species // Planta Medica. 2006. V. 72. P. 850–853. https://doi.org/10.1055/s-2006-941543
  11. Provan J., Hunter A.M., McDonald R.A. et al. Restricted gene flow in fragmented population of a wind-pollinated tree // Conserv. Genet. 2000. V. 9. № 6. P. 1521–1532. https://doi.org/10.1007/s10592-007-9484-y
  12. Van der Merwe M., Winfield M.O., Arnold G.M., Parker J.S. Spatial and temporal aspects of the genetic structure of Juniperus communis populations // Mol. Ecol. 2000. V. 9. P. 379–386. https://doi.org/10.1046/j.1365-294x.2000.00868.x
  13. Hamrick J.L., Godt M.J.W. Effects of life history traits on genetic diversity in plant species // Philos. Trans Roy. Soc. Lond. B Biol. Sci. 1996. V. 351(1345). P. 1291–1298. https://doi.org/10.1098/rstb.1996.0112
  14. Michalczyk I.M., Sebastiani I.F., Buonamici A. et al. Characterization of highly polymorphic nuclear microsatellite loci in Juniperus communis L. // Mol. Ecol. Notes. 2006. V. 6. P. 346–348. https://doi.org/10.1111/j.1471-8286.2005.01227.x
  15. Reim S., Lochschmidt F., Proft A. et al. Genetic structure and diversity in Juniperus communis populations in Saxony, Germany // Biodivers. Conserv. 2016. V. 42. P. 9–18. https://doi.org/10.1515/biorc-2016-0008
  16. Jacquemart A.L., Buyens C., Delescaille L.-M., Rossum F.V. Using genetic evaluation to guide conservation of remnant Juniperus communis (Cupressaceae) populations // Plant Biol. 2021. V. 23. № 1. P. 193–204. https://doi.org/10.1111/plb.13188
  17. Hantemirova E.V., Heinze B., Knyazeva S.G. et al. A new Eurasian phylogeographical paradigm? Limited contribution of southern populations of the recolonization of high latitude populations in Juniperus communis L. (Cupressaceae) // J. Biogeogr. 2017. V. 44. № 2. P. 271–282.https://doi.org/10.1111/jbi.12867
  18. Zhang Q., Yang Y.Z., Wu G.L. et al. Isolation and characterization of microsatellite DNA primers in Juniperus przewalskii Kom (Cupressaceae) // Conserv. Genet. 2008. V. 9. P. 767–769. https://doi.org/10.1007/s10592-007-9387-y
  19. Rumeu B., Sosa P.A., Nogales M., Gonzalez-Perez M.A. Development and characterization of 13 SSR markers for an endangered insular juniper (Juniperus cedrus Webb & Berth.) // Conserv. Genet. Resources. 2013. V. 5. P. 457–459. https://doi.org/10.1007/s12686-012-9827-y
  20. Raymond M., Rousset F. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism // J. Hered. 1995. V. 86. P. 248–249. https://doi.org/10.1111/j.1471-8286.2007.01931.x
  21. Brookfield J. A simple new method for estimating null allele frequency from heterozygote deficiency // Mol. Ecol. 1996. V. 5. P. 453–455. https://doi.org/10.1046/j.1365-294X.1996.00098.x
  22. Oosterhout C.V., Hutchinson W.F., Wills D.P.M., Shipley P. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data // Mol. Ecol. Notes. 2004. V. 4. P. 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  23. Excoffier L., Lischer H. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows // Mol. Ecol. Resour. 2010. V. 10. P. 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  24. Nei M., Tajima F., Tateno Y. Accuracy of estimated phylogenetic trees from molecular data // J. Mol. Evol. 1983. V. 19. P. 153–170. https://doi.org/10.1007/BF02300753
  25. Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data // Genetics. 2000. V. 155. P. 945–959. https://doi.org/10.1093/genetics/155.2.945
  26. Earl D.A., von Holdt B.M. Structure harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method // Conserv. Genet. Resour. 2012. V. 4. P. 359–361. https://doi.org/10.1007/s12686-011-9548-7
  27. Dupanloup I., Schneider S., Excoffier L. A simulated annealing approach to define the genetic structure of populations // Mol. Ecol. 2002. V. 11. P. 2571–2581. https://doi.org/10.1046/j.1365-294X.2002.01650.x
  28. Mantel N.A. The detection of disease clustering and generalized regression approach // Cancer Res. 1967. V. 27. P. 209–220.
  29. Vanden Broeck A., Gruwez R., Cox K. et al. Genetic structure and seed-mediated dispersal rates of an endangered shrub in a fragmented landscape: A case study for Juniperus communis in northwestern Europe // BMC Genetics. 2011. V. 12. P. 1–7. https://doi.org/10.1186/1471-2156-12-73
  30. Ritland C., Pape T., Ritland K. Genetic structure of yellow cedar (Chamaecyparis nootkatensis) // Can. J. Bot. 2001. V. 79. P. 822–828. https://doi.org/10.1139/b01-053
  31. Somme L., Mayer C., Rasp E.O., Jacquemart A.L. Influence of spatial distribution and size of clones on the realized outcrossing rate of the marsh cinquefoil (Comarum palustre) // Annals Botany. 2014. V. 113. P. 477–487. https://doi.org/10.1093/aob/mct280
  32. Егорова И.А. Краткий очерк истории формирования современной растительности Камчатки // Камчатка: события, люди: Материалы XXV Крашенинниковских чтений. Петропавловск-Камчатский, 2008. С. 88–93.
  33. Hantemirova E.V., Marchuk E.A. Phylogeography and genetic structure of a subarctic-alpine shrub species, Alnus alnobetula (Ehrh.) K. Koch s. l., inferred from chloroplast DNA markers // Tree Genet. Genom. 2021. V. 17. P. 18. https://doi.org/10.1007/s11295-021-01503-0
  34. Polezhaeva M.A., Lascoux M., Semerikov V.L. Cytoplasmic DNA variation and biogeography of Larix Mill. in Northeast Asia // Mol. Ecol. 2010. V.19. P. 1239–1252. https://doi.org/10.1111/j.1365-294x.2010.04552.x
  35. Fedorov V., Goropashnaya A.V., Boeskorov G.G., Cook J.A. Comparative phylogeography and demographic history of the wood lemming (Myopus schisticolor): Implications for late Quaternary history of the taiga species in Eurasia // Mol. Ecol. 2008. V. 17. P. 598–610. https://doi.org/10.1111/j.1365-294x.2007.03595.x
  36. Myers N., Mittermeier R.A., Mittermeier C.G. et al. Biodiversity hotspots for conservation priorities // Nature. 2000. V. 403. P. 853–858. https://doi.org/10.1038/35002501
  37. Zhang J.-Q., Meng S.-Y., Allen G.A. et al. Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae) // Mol. Phylogenet. Evol. 2014. V. 77. P. 147–158. https://doi.org/10.1016/j.ympev.2014.04.013
  38. Zhang H.J., Feng T., Landis J.B. et al. Molecular phylogeography and ecological niche modeling of Sibbaldia procumbens s.l. (Rosaceae) // Front Genet. 2019. V. 10. P. 201. https://doi.org/10.3389/fgene.2019.00201
  39. Jia D.R., Abbott R.J., Liu T.L. et al. Out of the Qinghai-Tibet Plateau: Evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophae rhamnoides (Elaeagnaceae) // New Phytol. 2012. V. 194. P. 1123–1133. https://doi.org/10.1111/j.1469-8137.2012.04115.x
  40. Michalczyk I.M., Opgenoorth L., Luecke Y. et al. Genetic support for perglacial survival of Juniperus communis L. in Central Europe // Holocene. 2010. V. 20. № 6. P. 887–894. https://doi.org/10.1177/0959683610365943
  41. Schönswetter P., Stehlik I., Holderegger R., Tribsch A. Molecular evidence for glacial refugia of mountain plants in the European Alps // Mol. Ecol. 2005. V. 14. P. 3547–3555. https://doi.org/10.1111/j.1365-294X.2005.02683.x
  42. Shuvaev D.N., Ibe A.A. Genetic structure and postglacial recolonization of Pinus sibirica Du Tour in the West Siberian Plain, inferred from nuclear microsatellite markers // Silvae Genet. 2021. V. 70. P. 99–107. https://doi.org/10.2478/sg-2021-0008
  43. Mao K., Hao G., Liu J. et al. Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals // New Phytol. 2010. V. 188. P. 254–272. https://doi.org/10.1111/j.1469-8137.2010.03351.x
  44. Величко А.А. Природный процесс в плейстоцене. М., 1973. 256 с.
  45. Elias S.A., Short S.K., Birks H.H. Late Wisconsin environments of the Bering Land Bridge // Palaeogeogr., Palaeoclimatol., Palaeoecol. 1997. V. 136. P. 293–308.
  46. Tsutsui K., Suwa A., Sawada K.S. et al. Incongruence among mitochondrial, chloroplast and nuclear gene trees in Pinus subgenus Strobus (Pinaceae) // J. Plant. Res. 2009. V. 122. P. 509–521. https://doi.org/10.1007/s10265-009-0246-4
  47. Gernandt D.S., Lopez G.G., Garcia S.O., Liston A. Phylogeny and classification of Pinus // Taxon. 2005. V. 54. V. 1. P. 29–42.https://doi.org/10.2307/25065300

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (212KB)

Copyright (c) 2023 Е.В. Хантемирова, В.А. Бессонова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies