Influence of Growth Regulators and Different Spectra of Monochromatic Radiation on the Growth and Biosynthetic Characteristics of Callus Culture of Ipomoea batatas (L.) Lam.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work studied the influence of plant growth regulators as well as the effect of monochromatic radiation of different spectral composition on the growth and accumulation of secondary metabolites in the callus culture of sweet potato (Ipomoea batatas L.). It was found that auxin analogues in low concentrations (0.5 mg/L) significantly stimulated the growth of cell biomass, while the effect of 4-chlorophenoxyacetic acid (4-CPA) was more pronounced (stimulation 16 times) than that of 2,4-dichlorophenoxyacetic acid (2,4-D) (13.5 times stimulation). Both the increase in the concentration of 2,4-D and 4-CPA in the medium and the addition of cytokinin, 6-benzylaminopurine (BAP), led to a significant inhibition of culture growth (up to three times). In contrast to 2,4-D, the addition of 4-CPA led to an eightfold increase in the total content of polyphenolic compounds in cultured cells. Activating effect of 4-CPA on the biosynthetic characteristics of I. batatas cell culture persisted even with the addition of BAP, while an increase in the concentration of 4‑CPA led to the leveling of the activating effect. Monochromatic radiation—white, red (660 and 630 nm), yellow, green, and blue (440 and 460 nm) light—inhibited growth (up to 1.5 times) and the total accumulation of secondary metabolites in I. batatas cells (up to 1.8 times). At the same time, the white, bright blue, and red spectra differentially activated the formation of individual compounds 3,4-dicaffeoylquinic acid and 3-feruloyl-5-caffeoylquinic acid. Thus, the authors have established that both auxin analogues and spectral radiation exhibit different effects on the growth and biosynthetic characteristics of the I. batatas calli.

About the authors

Yu. A. Yugay

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences

Email: yuya1992@mail.ru
Vladivostok, Russia

O. V. Grishchenko

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences

Email: yuya1992@mail.ru
Vladivostok, Russia

E. A. Vasyutkina

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences

Email: yuya1992@mail.ru
Vladivostok, Russia

V. P. Grigorchuk

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences

Email: yuya1992@mail.ru
Vladivostok, Russia

E. N. Chukhlomina

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences

Email: yuya1992@mail.ru
Vladivostok, Russia

Zh. L. Tsydeneshieva

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences

Email: yuya1992@mail.ru
Vladivostok, Russia

O. D. Kudinova

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences

Email: yuya1992@mail.ru
Vladivostok, Russia

Yu. L. Yaroshenko

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences

Email: yuya1992@mail.ru
Vladivostok, Russia

A. I. Degtyarenko

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences

Email: yuya1992@mail.ru
Vladivostok, Russia

E. P. Subbotin

Institute of Automation and Control Processes, Far East Branch, Russian Academy of Sciences

Email: yuya1992@mail.ru
Vladivostok, Russia

V. P. Bulgakov

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences

Email: yuya1992@mail.ru
Vladivostok, Russia

Yu. N. Kulchin

Institute of Automation and Control Processes, Far East Branch, Russian Academy of Sciences

Email: yuya1992@mail.ru
Vladivostok, Russia

Yu. N. Shkryl

Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far East Branch, Russian Academy of Sciences

Author for correspondence.
Email: yuya1992@mail.ru
Vladivostok, Russia

References

  1. Nawiri S.O., Oduor R.O., Jalemba A.M. Genetic engineering of sweet potatoes (Ipomoea batatas) using isopentenyl transferase gene for enhanced drought tolerance // Asian J. Agric. 2017. V. 1. P. 85. https://doi.org/10.13057/asianjagric/g010206
  2. Phahlane C.J., Laurie S.M., Shoko T., Manhivi V.E., Sivakumar D. Comparison of caffeoylquinic acids and functional properties of domestic sweet potato (Ipomoea batatas (L.) Lam.) storage roots with established overseas varieties // Foods. 2022. V. 11. P. 1329. https://doi.org/10.3390/foods11091329
  3. Tanaka M., Ishiguro K., Oki T., Okuno S. Functional components in sweetpotato and their genetic improvement // Breed Sci. 2017. V. 67. P. 52. https://doi.org/10.1270/jsbbs.16125
  4. Santana-Gálvez J., Cisneros-Zevallos L., Jacobo-Velázquez D. Chlorogenic acid: recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome // Molecules. 2017. V. 22. P. 358. https://doi.org/10.3390/molecules22030358
  5. Kai K., Shimizu B., Mizutani M., Watanabe K., Sakata K. Accumulation of coumarins in Arabidopsis thaliana // Phytochem. 2006. V. 67. P. 379. https://doi.org/10.1016/j.phytochem.2005.11.006
  6. Teow C.C., Truong V.-D., McFeeters R.F., Thompson R.L., Pecota K.V., Yencho G.C. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours // Food Chem. 2007. V. 103. P. 829. https://doi.org/10.1016/j.foodchem.2006.09.033
  7. Truong V.-D., McFeeters R.F., Thompson R.T., Dean L.L., Shofran B. Phenolic acid content and composition in leaves and roots of common commercial sweetpotato (Ipomea batatas L.) cultivars in the United States // J. Food Sci. 2007. V. 72. P. C343. https://doi.org/10.1111/j.1750-3841.2007.00415.x
  8. Alam M., Rana Z., Islam S. Comparison of the proximate composition, total carotenoids and total polyphenol content of nine orange-fleshed sweet potato varieties grown in Bangladesh // Foods. 2016. V. 5. P. 64. https://doi.org/10.3390/foods5030064
  9. Kozai T., Kubota C., Ryoung Jeong B. Environmental control for the large-scale production of plants through in vitro techniques // Plant Cell Tiss. Organ Cult. 1997. V. 51. P. 49. https://doi.org/10.1023/A:1005809518371
  10. Wawrosch C., Zotchev S.B. Production of bioactive plant secondary metabolites through in vitro technologies—status and outlook // Appl. Microbiol. Biotech. 2021. V. 105. P. 6649. https://doi.org/10.1007/s00253-021-11539-w
  11. Thiruvengadam M., Rekha K., Rajakumar G., Lee T.-J., Kim S.-H., Chung I.-M. Enhanced production of anthraquinones and phenolic compounds and biological activities in the cell suspension cultures of Polygonum multiflorum // Int. J. Mol. Sci. 2016. V. 17. P. 1912. https://doi.org/10.3390/ijms17111912
  12. Khan H., Khan T., Ahmad N., Zaman G., Khan T., Ahm-ad W., Batool S., Hussain Z., Drouet S., Hano C., Abbasi B.H. Chemical elicitors-induced variation in cellular biomass, biosynthesis of secondary cell products, and antioxidant system in callus cultures of Fagonia indica // Molecules. 2021. V. 26. P. 6340. https://doi.org/10.3390/molecules26216340
  13. Chung I.M., Rekha K., Rajakumar G., Thiruvengadam M. Elicitation of silver nanoparticles enhanced the secondary metabolites and pharmacological activities in cell suspension cultures of bitter gourd // Biotech. 2018. V. 8. P. 412. https://doi.org/10.1007/s13205-018-1439-0
  14. Hashim M., Ahmad B., Drouet S., Hano C., Abbasi B.H., Anjum S. Comparative effects of different light sources on the production of key secondary metabolites in plants in vitro cultures // Plants. 2021. V. 10. P. 1521. https://doi.org/10.3390/plants10081521
  15. Mipeshwaree Devi A., Khedashwori Devi K., Premi Devi P., Lakshmipriyari Devi M., Das S. Metabolic engineering of plant secondary metabolites: prospects and its technological challenges // Front. Plant Sci. 2023. V. 14. P. 1171154. https://doi.org/10.3389/fpls.2023.1171154
  16. De Geyter N., Gholami A., Goormachtig S., Goossens A. Transcriptional machineries in jasmonate-elicited plant secondary metabolism // Trends Plant Sci. 2012. V. 17. P. 349. https://doi.org/10.1016/j.tplants.2012.03.001
  17. Halder M., Sarkar S., Jha S. Elicitation: a biotechnological tool for enhanced production of secondary metabolites in hairy root cultures // Eng. Life Sci. 2019. V. 19. P. 880. https://doi.org/10.1002/elsc.201900058
  18. Sanchez-Muñoz R., Moyano E., Khojasteh A., Bonfill M., Cusido R.M., Palazon J. Genomic methylation in plant cell cultures: a barrier to the development of commercial long-term biofactories // Eng. Life Sci. 2019. V. 19. P. 872. https://doi.org/10.1002/elsc.201900024
  19. Dubrovina A.S., Kiselev K.V. Effect of long-term cultivation on resveratrol accumulation in a high-producing cell culture of Vitis amurensis // Acta Physiol. Plant. 2012. V. 34. P. 1101. https://doi.org/10.1007/s11738-011-0907-5
  20. Veremeichik G.N., Bulgakov V.P., Shkryl Y.N., Silantieva S.A., Makhazen D.S., Tchernoded G.K., Mischenko N.P., Fedoreyev S.A., Vasileva E.A. Activation of anthraquinone biosynthesis in long-cultured callus culture of Rubia cordifolia transformed with the rolA plant oncogene // J. Biotech. 2019. V. 306. P. 38. https://doi.org/10.1016/j.jbiotec.2019.09.007
  21. Vasyutkina E.A., Yugay Y.A., Grigorchuk V.P., Grishchenko O.V., Sorokina M.R., Yaroshenko Y.L., Kudinova O.D., Stepochkina V.D., Bulgakov V.P., Shkryl Y.N. Effect of stress signals and Ib-rolB/C overexpression on secondary metabolite biosynthesis in cell cultures of Ipomoea batatas // Int. J. Mol. Sci. 2022. V. 23. P. 15100. https://doi.org/10.3390/ijms232315100
  22. Bantis F., Smirnakou S., Ouzounis T., Koukounaras A., Ntagkas N., Radoglou K. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs) // Sci. Hortic. 2018. V. 235. P. 437. https://doi.org/10.1016/j.scienta.2018.02.058
  23. Bajwa M.N., Khanum M., Zaman G., Ullah M.A., Farooq U., Waqas M., Ahmad N., Hano C., Abbasi B.H. Effect of wide-spectrum monochromatic lights on growth, phytochemistry, nutraceuticals, and antioxidant potential of in vitro callus cultures of Moringa oleifera // Molecules. 2023. V. 28. P. 1497. https://doi.org/10.3390/molecules28031497
  24. Szopa A., Ekiert H. The importance of applied light quality on the production of lignans and phenolic acids in Schisandra chinensis (Turcz.) Baill. cultures in vitro // Plant Cell Tiss. Organ Cult. 2016. V. 127. P. 115. https://doi.org/10.1007/s11240-016-1034-1
  25. Lian T.T., Cha S.-Y., Moe M.M., Kim Y.J., Bang K.S. Effects of different colored LEDs on the enhancement of biologically active ingredients in callus cultures of Gynura procumbens (Lour.) Merr. // Molecules. 2019. V. 24. P. 4336. https://doi.org/10.3390/molecules24234336
  26. Adil M., Haider Abbasi B., Ul Haq I. Red light controlled callus morphogenetic patterns and secondary metabolites production in Withania somnifera L. // Biotechnol. Rep. (Amst). 2019. V. 24 P. e00380. https://doi.org/10.1016/j.btre.2019.e00380
  27. Песяк С.В. Действие селективного света на рост клеточных культур растения Artemisia annua L. // Вестник Томского гос. университета. Биология. 2010. № 2. С. 29.
  28. Murashige T., Skoog F.A. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiol. Plant. 1962. V. 15. P. 473.
  29. Grishchenko O.V., Subbotin E.P., Gafitskaya I.V., Vereshchagina Y.V., Burkovskaya E.V., Khrolenko Y.A., Grigorchuk V.P., Nakonechnaya O.V., Bulgakov V.P., Kulchin Y.N. Growth of micropropagated Solanum tuberosum L. plantlets under artificial solar spectrum and different mono- and polychromatic LED lights // Hortic. Plant J. 2022. V. 8. P. 205. https://doi.org/10.1016/j.hpj.2021.04.007
  30. Yue W., Ming Q.L., Lin B., Rahman K., Zheng C.J., Han T., Qin L.P. Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites // Crit. Rev. Biotechnol. 2016. V. 36. P. 215. https://doi.org/10.3109/07388551.2014.923986
  31. Калашникова Е.А., Киракосян Р.Н., Абубакаров Х.Г., Зайцева С.М. Влияние гормонального состава питательной среды и эндогенных полифенолов на формирование каллусной ткани Ipomoea batatas (L.) // Вопросы биологической, медицинской и фармацевтической химии. 2022. № 11. С. 46.
  32. De Silva A.E., Kadir M.A., Aziz M.A., Kadzimin S. Proliferation potential of 18-month-old callus of Ananas comosus L. cv. Moris. // Sci. World J. 2006. V. 6. P. 169. https://doi.org/10.1100/tsw.2006.34
  33. Peeters A.J., Gerards W., Barendse G.W., Wullems G.J. In vitro flower bud formation in tobacco: interaction of hormones // Plant Physiol. 1991. V. 97. P. 402. https://doi.org/10.1104/PP.97.1.402
  34. De Klerk G.J., Brugge J.T., Marinova S. Effectiveness of indoleacetic acid, indolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in Malus ‘Jork 9’ // Plant Cell Tiss. Organ Cult. 1997. V. 49. P. 39. https://doi.org/10.1023/A:1005850222973
  35. Grishchenko O.V., Grigorchuk V.P., Tchernoded G.K., Koren O.G., Bulgakov V.P. Callus culture of Scorzonera radiata as a new, highly productive and stable source of caffeoylquinic acids // Molecules. 2022. V. 27. P. 7989. https://doi.org/10.3390/molecules27227989
  36. Vereshchagina Y.V., Bulgakov V.P., Grigorchuk V.P., Rybin V.G., Veremeichik G.N., Tchernoded G.K., Gorpenchenko T.Y., Koren O.G., Phan N.H.T., Minh N.T., Chau L.T., Zhuravlev Y.N. The rolC gene increases caffeoylquinic acid production in transformed artichoke cells // Appl. Microbiol. Biotechnol. 2014. V. 98. P. 7773. https://doi.org/10.1007/s00253-014-5869-2
  37. Томилова С.В., Ханды М.Т., Кочкин Д.В., Галишев Б.А., Клюшин А.Г., Носов А.М. Влияние синтетических аналогов ауксинов – 2,4-Д и α-НУК – на ростовые и биосинтетические характеристики суспензионной культуры клеток Tribulus terrestris L. // Физиология растений. 2020. Т. 67. С. 389. https://doi.org/10.31857/S001533032004017X
  38. Khan T., Ullah M.A., Garros L., Hano C., Abbasi B.H. Synergistic effects of melatonin and distinct spectral lights for enhanced production of anti-cancerous compounds in callus cultures of Fagonia indica // J. Photochem. Photobiol. B. 2019. V. 190. P. 163. https://doi.org/10.1016/j.jphotobiol.2018.10.010
  39. Han J., Miyamae Y., Shigemori H., Isoda H. Neuroprotective effect of 3,5-di-caffeoylquinic acid on SH-SY5Y cells and senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1 // Neurosci. 2010. V. 169. P. 1039. https://doi.org/10.1016/j.neuroscience.2010.05.049
  40. Matthews D.G., Caruso M., Alcazar Magana A., Wright K.M., Maier C.S., Stevens J.F., Gray N.E., Quinn J.F., Soumyanath A. Caffeoylquinic acids in Centella asiatica reverse cognitive deficits in male 5XFAD alzheimer’s disease model mice // Nutrients. 2020. V. 12. P. 3488. https://doi.org/10.3390/nu12113488

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (130KB)
3.

Download (1MB)
4.

Download (82KB)
5.

Download (59KB)
6.

Download (51KB)
7.

Download (264KB)

Copyright (c) 2023 Ю.А. Югай, О.В. Грищенко, Е.А. Васюткина, В.П. Григорчук, Е.Н. Чухломина, Ж.Л. Цыденешиева, О.Д. Кудинова, Ю.Л. Ярошенко, А.И. Дегтяренко, Е.П. Субботин, В.П. Булгаков, Ю.Н. Кульчин, Ю.Н. Шкрыль

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies