Interaction of magnesium ions with semiquinone radicals of tiron used as an indicator of reactive oxygen species

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Electron paramagnetic resonance spectroscopy (EPR) and quantum chemical calculations based on density functional theory were used to demonstrate that the earlier observed changes in the EPR spectra of Tiron semiquinone radical dissolved in sea water solution occur due to interaction of Mg2+ ions with Tiron radical. This interaction is caused by electrostatic attraction between Mg2+ ions and Tiron radicals, which bears great charges of opposite sign (+2 and -3), on the one hand, and due to the ability of Mg2+ ion to bind to bidentate oxygen-containing ligands efficiently, on the other hand. The formation of tight contact ion pairs leads to electron and spin density redistribution in the Tiron radical, as can been seen by the observed changes in the EPR spectra of the radical.

About the authors

L. Yu Ustynuyk

Lomonosov Moscow State University

Email: leila_ust@mail.ru
Moscow, Russia

V. A Medvedeva

Lomonosov Moscow State University;E.I. Chazov National Medical Research Center for Cardiology, Ministry of Health of the Russian Federation

Moscow, Russia

S. O Liubimovskii

A.M. Prokhorov General Physics Institute, Russian Academy of Sciences

Moscow, Russia

E. K Ruuge

Lomonosov Moscow State University;E.I. Chazov National Medical Research Center for Cardiology, Ministry of Health of the Russian Federation

Moscow, Russia

A. N Tikhonov

Lomonosov Moscow State University

Email: an_tikhonov@mail.ru
Moscow, Russia

References

  1. B.Commoner, J. Townsend, and G. E. Pake, Nature, 174 (4432), 689 (1954).
  2. D. Harman, Proc. Natl. Acad. Sci. USA, 78 (11), 7124 (1981).
  3. A. N. Ledenev, A. A. Konstantinov, E. Popova, and E. K.Ruuge, Biochem.Int., 13 (2), 391 (1986).
  4. M. A. Hemminga, Chem. Phys. Lipids, 32 (3-4), 323 (1983).
  5. M. Otto, J. Stach, R. Kirmse, and G. Werner, Talanta, 28 (5), 345 (1981).
  6. F. A. Taiwo, Spectroscopy, 22 (6), 491 (2008).
  7. R. W. Miller and F. D. H. Macdowall, Biochim. Biophys. Acta, 387, 176 (1975).
  8. И. В. Григолава, М. Ю. Ксензенко, A. A. Константинов и др., Биохимия, 45 (1), 75 (1980).
  9. О. В. Коркина и Э. К. Рууге, Биофизика, 45 (4), 695 (2000).
  10. A. L. Dudylina, M. V. Ivanova, K. B. Shumaev, and E. K.Ruuge, Cell Biochem. Biophys., 77, 99 (2019).
  11. A. V. Peskin, Yu. A. Labas, and A. N. Tikhonov, FEBS Lett., 434 (1-2), 201 (1998).
  12. S. O. Liubimovskii, L.Yu. Ustynyuk, and A.N. Tikhonov, J. Mol. Liq., 333, 115810 (2021).
  13. D. N. Laikov, Chem. Phys. Lett., 281 (1-3), 151 (1997).
  14. Д. Н. Лайков, Дисс.. канд. физ.-мат. наук (МГУ имени М.В. Ломоносова, М., 2000).
  15. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77 (18), 3865 (1996).
  16. L. N. Ikryannikova, L. Yu. Ustynyuk, and A. N. Tikhonov, J. Phys. Chem. A, 108 (21), 4759 (2004).
  17. L. N. Ikryannikova, L. Yu. Ustynyuk, and A. N. Tikhonov, Magn. Reson. Chem., 48 (5), 337 (2010).
  18. Дж. Вертц и Дж. Болтон, Теория и практические приложения метода ЭПР (Мир, М., 1975).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies