Effects of DNA-binding ligands from dimeric bisbenzimidazoles series DBA(n) and DBPA( n) in combination with γ-radiation on epithelial-mesenchymal transition and pool size of MCF-7 breast cancer stem cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Radiation therapy is one of the main treatments for malignant neoplasms, including breast cancer. However, it is known, that radiation therapy can lead to an increase in the number of cancer stem cells, which are resistant to traditional antitumor effects, and are believed to be responsible for the development of recurrences and metastases. Therefore, the development of cancer stem cells elimination means is of considerable interest, especially in combination with ionizing radiation. The effects of single and combined exposure to new series of minor-groove DNA ligands - dimeric bisbenzimidazoles - DBA(n) and DBPA(n) (where n is the number of methylene groups between two bisbenzimidazole blocks) and Y-radiation on human Breast cancer cells were studied in our work for MCF-7 line in vitro. Compounds with maximum cytotoxic effect and cell binding were selected, and then the effects of the latter on the CD44+CD24-/low cancer stem cells population and radiation-induced epithelial-mesenchymal transition were studied by the criterion of vimentin expression. An increase in the expression level of this protein and simultaneously in the relative number of cancer stem cells after a single exposure of Y-radiation at a dose of 4 Gy were shown. DBPA(1,4) in combination with irradiation blocked the radiation-induced vimentin expression and decreased the relative number of cancer stem cells by 1.7 and 4.1 times compared with irradiation (p = 0.041 and p = 0.005), respectively. At the same time, the absolute number of cancer stem cells decreased by 2.8 and 12.0 times compared to irradiation (p = 0.029 and p = 0.004), respectively. In contrast, DBA(5,7) by itself or in combination with Y-irradiation increased the level of vimentin expression and the same compounds when combined with irradiation increased the relative number of cancer stem cells by 3.1 and 3.6 times (p = 0.006 and p = 0.005), respectively, compared with irradiation. The absolute number of cancer stem cells increased by 2.2 and 1.5 times (p = 0.017 and p = 0.032), respectively. The data obtained show a close relationship between epithelial-mesenchymal transition and formation of the cancer stem cells pool after radiation exposure, and also indicate the prospects for further study of DBPA(1,4) as a means of cancer stem cells elimination under in vivo conditions.

About the authors

K. A Churiukina

A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation

Email: churiukina@inbox.ru
Obninsk, Kaluga region, Russia

O. N Matchuk

A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation;Joint Institute for Nuclear Research

Obninsk, Kaluga region, Russia;Dubna, Moscow Region, Russia

A. D Kaprin

National Medical Research Radiological Centre, Ministry of Health of the Russian Federation;P Hertzen Moscow Oncology Research Institute - Branch of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation;Peoples’ Friendship University of Russia

Obninsk, Kaluga region, Russia;Moscow, Russia

S. A Ivanov

A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation;Peoples’ Friendship University of Russia

Obninsk, Kaluga region, Russia

V. S Koval

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

A. F Arutyunyan

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

A. L Zhuze

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

I. A Zamulaeva

A. Tsyb Medical Radiological Research Center - Branch of the National Medical Research Radiological Centre, Ministry of Health of the Russian Federation;Joint Institute for Nuclear Research

Obninsk, Kaluga region, Russia;Dubna, Moscow Region, Russia

References

  1. Статистика по раку молочной железы (26.03.2021) [Электронный ресурс]: официальный сайт Всемирной организации здравоохранения. Режим доступа: https://www.who.int/ru/news-room/factsheets/detail/breast-cancer.
  2. M. Kakarala and M. S. Wicha, J. Clin. Oncol., 26 (17), 2813 (2008).
  3. S. Taurina and H. Alkhalif, Neoplasia, 22 (12), 663 (2020).
  4. P. Zhu and Z. Fan, Biophys. Rep., 4 (4), 178 (2018).
  5. N. K. Lytle, A. G. Barber, and T. Reya, Nat. Rev., 18, 669 (2018).
  6. T. Zhang, H. Zhou, K. Wang, et al., Biomed. Pharmacother., 147, 112616 (2022).
  7. X. Zeng, C. Liu, J. Yao, et al., Pharmacol. Res., 136, 105320 (2021).
  8. M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, et al., Proc. Natl. Acad. Sci. USA, 100 (7), 3983 (2003).
  9. F. F de Bega, P. Caetano, R. Gerhard, et al., J. Clin. Pathol., 66, 187 (2013).
  10. R. Camerlingo, G. A. Ferraro, F. D. Francesco, et al., Oncol. Rep., 31, 1127 (2014).
  11. W. Li, H. Ma, J. Zhang, et al., Sci. Rep., 7, 13856 (2017).
  12. C. Sheridan, H. Kishimoto, R. K. Fuchs, et al., Breast Cancer Res., 8 (5), 1 (2006).
  13. T. Phillips, W. H. McBride, and F. Pajonk, JNCI J. Natl. Cancer Inst., 98 (24), 1777 (2006).
  14. C. Lagadec, E. Vlashi, L. D. Donna, et al., Breast Cancer Res., 12 (13), 1 (2010).
  15. И. А. Замулаева, О. Н. Матчук, Е. И. Селиванова и др., Радиац. биология. Радиоэкология, 54 (3), 256 (2014).
  16. K. A. Churyukina, A. L. Zhuze, A. A. Ivanov, et al., Biophysics, 65 (1), 87 (2020).
  17. F. De Bacco, P. Luraghi, E. Medico, et al., J. Natl. Cancer Inst., 103 (8), 645 (2011).
  18. A. Kawamoto, T. Yokoe, K. Tanaka, et al., Oncol. Rep., 27 (1), 51 (2012).
  19. X. Zhang, X. Li, N. Zhang, et al., Biochem. Biophys. Res.Commun., 412 (1), 188 (2011).
  20. S. Y. Lee, E. K. Jeong, M. K. Ju, et al., Mol. Cancer, 16, Art. ID 10 (2017). doi: 10.1186/s12943-016-0577-4
  21. C. Lagadec, E. Vlashi, L. D. Donna, et al., Stem Cells, 30, 833 (2012).
  22. X. Gao. B. J. Sishc, C. B. Nelson, et al., Front. Oncol., 9 (138), Art. ID 00138 (2016). DOI: 10.3389/ fonc.2016.00138
  23. F. Li, K. Zhuo, L. Gao, et al., Oncol. Lett., 12, 3059 (2016).
  24. L. Sun and J. Fang, Cell Mol. Life Sci.,73 (23), 4493 (2016).
  25. S. Keyvani-Ghamsari, K. Khorsandi, A. Rasul, et al., Clin. Epigenet., 13, Art. ID 120 (2021). doi: 10.1186/s13148-021-01107-4
  26. E. Nowak and I. Bednarek, Cells, 10, 3435 (2021).
  27. Y. Yamada, H. Haga, and Y. Yamada, Stem Cells Transl., 3 (10), 1182 (2014).
  28. A. Ivanov, V. Koval, O. Susova, et al., Bioorg. Med. Chem. Lett., 25 (13), 2634 (2015).
  29. N. A. Cherepanova, A. A. Ivanov, D. V. Maltseva, et al., J. Enzyme Inhib. Med. Chem., 26, 295 (2011).
  30. O. Y. Susova, A. A. Ivanov, S. M.Ruiz, et al., Biochemistry (Moscow), 75 (6), 695 (2010).
  31. M. Darii, A. R. Rakhimova, V. N. Tashlitskii, et al., Mol. Biol. (Moscow), 47 (2), 292 (2013).
  32. К. А. Чурюкина, И. А. Замулаева, А. А. Иванов и др., Радиац. биология. Радиоэкология, 57 (2), 136 (2017).
  33. I. A. Zamulaeva, K. A. Churyukina, O. N. Matchuk, et al., AIMS Biophysics, 7 (4), 339 (2020).
  34. V. S.Koval, A. F. Arutyunyan, and A. L. Zhuze, Bioorg. Med. Chem., 26 (9), 2302 (2018).
  35. V. S. Koval, A. F. Arutyunyan, V. I. Salyanov, et al., Bioorg. Med. Chem., 28, 115378 (2020).
  36. P. G. Baraldi, A. Bovero, F. Fruttarolo, et al., Med. Res. Rev., 24 (4), 475 (2004).
  37. K. Miskovid, M. Bujak, M. Baus, et al., Arh. Hig. Rada Toksikol. 64 (4), 593 (2013).
  38. K. S. Sainia, H., Hamidullaha, R. Ashrafb, et al., Mol. Carcinogenesis, 54 (4), 1266 (2016).
  39. M. S. Nafie, K. Arafa, N. K. Sedky, et al., Chem.-Biol.Interact., 324, 109087 (2020).
  40. G. S. Khan, A. Shah., Ziaur-Rehman, et al., J. Photochem. Photobiol. B, 115, 105 (2012).
  41. R.-R. Begicevic and M. Falasca, Int. J. Mol. Sci., 18, 1(2017).
  42. J. Konge, F. Leteurtre, M. Goislard, et al., Oncotarget, 9 (34), 23531 (2018).
  43. H. Fazilaty, L. Rago., K. K. Youssef, et al., Nature Commun., 5115, Art. ID 5115 (2019). doi: 10.1038/s41467-019-13091-8
  44. B. Dong, Z. Qiu, Y. Wu, Front. Pharmacol. 11, Art. ID 596239 (2020). doi: 10.3389/fphar.2020.596239
  45. M. Garg, World J. Stem Cells, 9 (8), 118 (2017).
  46. S. Kotiyal and S. Bhattacharya, Biochem. Biophys. Res.Commun., 453, 112 (2014).
  47. S. Tanabe, S. Quader, H. Cabral, et al., Front. Pharmacol., 11, Art. ID 00904 (2020). DOI: 10.3389/ fphar.2020.00904
  48. A. Kanamoto, I. Ninomiya, S. Harada, et. al., Int. J. Oncol., 49 (5), 1859 (2016).
  49. T. Boulding, R. D. McCuaig, A. Tan, et al., Sci. Rep., 8, Art. ID 73 (2018). doi: 10.1038/s41598-017-17913-x
  50. S. Ambrosio, C. D. Sacca, and B. Majello, Biocyim. Biophys. Acta - Gene Regulatory Mechanisms, 1860, 905 (2017).
  51. S. Zhang, Y. Gong, C. Li, et al., Cell Proliferation, 54 (2), Art. ID e12963 (2021). doi: 10.1111/cpr.12963
  52. H. M. Kwon, E. J. Kang, K. Kang, et al., Oncotarget, 8, 89005 (2017).
  53. G. Xue, Z. Ren., Y. Chen, et al., Cancer Lett., 361 (1), 121 (2015). doi: 10.1016/j.canlet.2015.02.046

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies