Dinitrosyl iron complexes with thiol-containing ligands as sources of universal cytotoxins - nitrosonium cations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It was shown that the release of a half of nitrosyl ligands from dinitrosyl iron units in the form of nitrosonium cation (NO+) from binuclear dinitrosyl iron complexes with thiol-containing ligands (B-DNIC) during DNIC decomposition in acid solutions is increased with the decrease of the stability of these complexes and completely blocked with the increase of the concentrations of free thiols (non-included into B-DNIC) up to the level that was two times and more than that of dinitrosyl iron units. It was demonstrated that the less stable B-DNIC with mercaptosuccinate degrade in an acidic environment at ambient temperature, while the decomposition of more stable B-DNIC with glutathione was only marked when the solution was heated at 80°C. The inhibition of NO+ release from B-DNIC in the presence of elevated free thiol level in the solution was due to the ability of free thiols to induce the reduction of NO+ to NO.

About the authors

A. F Vanin

N.N. Semenov Federal Research Center for Chemical Physics

Email: vanin.dnic@gmail.com
Moscow, Russia

N. A Tkachev

N.N. Semenov Federal Research Center for Chemical Physics

Moscow, Russia

References

  1. T.-T. Lu, Y.-M. Wang, C.-H. Hung, et al., Inorg. Chem., 57, 12425 (2018).
  2. S.-L. Cho, C.-J. Liao, and T.-T. Lu, J. Biol. Inorg. Chem., 24, 495 (2019).
  3. N. Lehnert, E. Kim, H.T. Dong, et al., Chem. Rev., 121, 14682 (2021).
  4. A. F. Vanin, Dinitrosyl iron complexes as a "working form" of nitric oxide in living organisms (Cambridge Scolar Publishing, Cambridge, UK, 2019).
  5. A. F Vanin, Int. J. Mol. Sci., 22, 10356 (2021).
  6. A. F Vanin, Cell Biochem. Biophys., 77, 279 (2019).
  7. А. Ф. Ванин, Биофизика, 65, 421 (2020).
  8. A. F Vanin, Appl. Magn. Res., 51, 851 (2020).
  9. A. F. Vanin, I. V. Malenkova, and V. A. Serezhenkov, Nitric Oxide Biol. Chem., 1, 191 (1997).
  10. A. F Vanin and D. Sh. Burbaev, Biophys. J., 878236 (2011).
  11. A. F Vanin, A. P. Poltorakov, V. D. Mikoyn, et al., Nitric Oxide Biol. Chem., 23, 136 (2010).
  12. В. Д. Микоян, Е. Н. Бургова, Р. Р. Бородулин и др., Биофизика, 65, 1142 (2020).
  13. A. F Vanin, Austin J. Analyt. Pharmac. Chem., 5, 1109 (2018).
  14. R. R. Borodulin, L. N. Kubrina, V. D. Mikoyan, et al., Nitric Oxide Biol. Chem., 66, 1 (2913).
  15. A. F. Vanin, I. V. Malenkova, and V. A. Serezhenkov, Nitric Oxide Biol. Chem., 1, 191 (1997).
  16. J. A. Farrar, R. Grinter, D. L. Pountney, et al., J. Chem. Soc. Dalton Trans., 2703 (1993).
  17. А. Ф. Ванин, В. Д. Микоян и Н. А. Ткачев, Биофизика, 67, 1047 (2022).
  18. A. L. Buchachenko and V. L. Berdinsky, J. Phys. Chem., 100, 1988 (1996).
  19. A. F Vanin, V. A. Tronov, and R. R. Borodulin, Cell Biochem. Biophys., 79, 93 (2021).
  20. A. L. Kleschyov, S. Strand, S. Schmitt, et al., Free Rad. Biol. Chem., 40, 1349 (2006).
  21. А. В. Шиповалов, А. Ф. Ванин, О. В. Пьянков и др., Биофизика, 67, 969 (2022).
  22. S. Khan, M. Kayahara, U. Joashi, et al., J. Cell Sci., 110, 2315 (1997).
  23. А. Ф. Ванин, Д. И. Телегина, В. Д. Микоян и др., Биофизика, 67, 938 (2022).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies