Stability of collagen gel after uv irradiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Type I collagen is the most abundant extracellular matrix protein in the human body, as well as is the main structural element in tissues and regulates cellular functions. In lifetime, the organism and extracellular matrix components such as collagen are exposed to UV irradiation. The purpose of this work was to study the effect of UV irradiation on the stability and structure of collagen fibrils. It has been shown that UV irradiation has a stabilization effect on collagen gel at a concentration of 0.5 mg/ml. Scanning electron microscope images have shown that the diameter of the collagen fibrils is not changed after UV irradiation. The degree of spreading of cells cultured on collagen fibrils after UV irradiation is greater compared to those cultured on collagen fibrils unirradiated with UV light. UV irradiation promotes a shift of the collagen amide A band to lower frequency, indicating that it induces structural changes in collagen.

About the authors

Yu. A Nashchekina

Institute of Cytology, Russian Academy of Sciences;Ioffe Institute, Russian Academy of Sciences

Email: nashchekina.yu@mail.ru
St. Petersburg, Russia

N. A Trusova

Institute of Cytology, Russian Academy of Sciences

St. Petersburg, Russia

P. O Nikonov

Institute of Cytology, Russian Academy of Sciences

St. Petersburg, Russia

A. V Nashchekin

Ioffe Institute, Russian Academy of Sciences

N. A Mikhailova

Institute of Cytology, Russian Academy of Sciences

St. Petersburg, Russia

References

  1. A. Bailey and R. Paul, J. Soc. Leather Technol. Chem., 82, 104 (1998).
  2. S. Ricard, Perspect. Biol., 1, 3 (2011).
  3. S. Ricard-Blum, Perspect. Biol., 3, 1 (2011).
  4. Yu. А. Nashchekina, А. А. Starostina, N. А. Trusova, et al., J. Physics: Conf. Series, 1697, 012053 (2020).
  5. A. Amaro-Ortiz, B. Yan, and J. A. D'Orazio, Molecules, 19, 6202 (2014).
  6. Yu. A. Nashchekina, N. M. Yudintceva, P. O. Nikonov, et al., Bull. Exp. Biol. Med., 163, 123 (2017).
  7. M. G. Haugh, C. M. Murphy, R. C. McKiernan, et al., Tissue. Eng. Part A, 17, 1201 (2011).
  8. Y. Hu, L. Liu, W. Dan, et al., Int. J. Biol. Macromol., 55, 221 (2013).
  9. S. J. Hollister and R. D. T. Maddox, J. Biomater., 23, 4095 (2002).
  10. J. S. Pieper, T. Hafmans, J. H. Veerkamp, et al. Biomaterials, 21, 581 (2000).
  11. M. G. Haugh., PhD Thesis (Trinity Colledge, Dublin University, Ireland, 2008).
  12. D.-H. Lew, P. H-T. Liu, and D. P. Orgill, J. Biomed. Mater. Res. B. Appl. Biomater., 82, 51 (2007).
  13. L. H. Olde Damink, P. J. Dijkstra, M. J. van Luyn, et al., Biomaterials, 17, 765 (1996).
  14. N. Davidenko, D. V. Bax, C. F. Schuster, et al., Mater. Sci.: Mater. Med., 27,14 (2016).
  15. N. Metreveli, L. Namicheishvili, K. Jariashvili, et al., Int. J. Photoenergy, 76830, 1 (2006).
  16. M. P. Ohan, K. S. Weadock, and M. G. Dunn, J. Biomed. Mater. Res., 60, 384 (2002).
  17. G. Chandrakasan, D. A. Torchia, K. A. Piez, J. Biol. Chem., 251, 6062 (1976).
  18. O. H. Lowry, N. J. Rosbrough, A. L. Farr, and R. J. Randall, J. Biol. Chem., 193, 265. (1951).
  19. Y. Nashchekina, A. Chabina, A. Nashchekin, et al., Polymers, 12, 1042 (2020).
  20. A. Sionkowska, J. Photoch. Photobiol. B: Biology, 82, 9 (2006).
  21. A. Kaminska and A. Sionkowska, Pol. Degr. Stability, 51,19 (1996).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies