Образование наноструктурированных композитов на основе Li4Ti5O12 при гидротермальной обработке компонентов

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Наноструктурированные композиты на основе Li4Ti5O12 в форме микросфер, состоящих из хаотично собранных призмоподобных частиц, получены при гидротермальной обработке ксерогелей TiO2 в водных растворах LiOH с последующим прокаливанием продуктов реакции при t ≥ 550°C. Показано, что фазовый состав микросфер, образующихся в процессе гидротермального синтеза, соответствует α-Li2TiO3. По данным элементного анализа, титан и кислород неравномерно распределяются в микросферах. Последовательное прокаливание микросфер при t ≤ 750°C приводит сначала к фазовой трансформации α-Li2TiO3 → β-Li2TiO3, затем к образованию наноструктурированной шпинели Li4Ti5O12 или композитов (Li4Ti5O12/TiO2, Li4Ti5O12/β-Li2TiO3) на ее основе. При этом прокаленные при 750°C микросферы Li4Ti5O12 наряду с основной кристаллической фазой содержат примесные рентгеноаморфные фазы TiO2 (анатаз) и β-Li2TiO3, нерегистрируемые методом рентгенофазового анализа.

About the authors

Т. Зима

Институт химии твердого тела и механохимии СО Российской академии наук; Новосибирский государственный технический университет

Author for correspondence.
Email: zima@solid.nsc.ru
Россия, 630128, Новосибирск, ул. Кутателадзе, 18; Россия, 630073, Новосибирск, пр. К. Маркса, 20

А. Ухина

Институт химии твердого тела и механохимии СО Российской академии наук

Email: zima@solid.nsc.ru
Россия, 630128, Новосибирск, ул. Кутателадзе, 18

Н. Уваров

Институт химии твердого тела и механохимии СО Российской академии наук; Новосибирский государственный технический университет

Email: zima@solid.nsc.ru
Россия, 630128, Новосибирск, ул. Кутателадзе, 18; Россия, 630073, Новосибирск, пр. К. Маркса, 20

References

  1. Yan H., Zhang D., Qilu, Duo X., Sheng X. A Review of Spinel Lithium Titanate (Li4Ti5O12) as Electrode Material for Advanced Energy Storage Devices // Ceram. Int. 2021. V. 47. P. 5870–5895.https://doi.org/10.1016/j.ceramint.2020.11.002
  2. Wang H., Wang L., Lin J., Yang J., Wu F., Li L., Chen R. Structural and Electrochemical Characteristics of Hierarchical Li4Ti5O12 as High-Rate Anode Material for Lithium-Ion Batteries // Electrochim. Acta. 2021. V. 368. P. 137470. https://doi.org/10.1016/j.electacta.2020.137470
  3. Zhang Q., Verde M.G., Seo J.K., Li X., Meng Y.S. Structural and Electrochemical Properties of Gd-Doped Li4Ti5O12 as Anode Material with Improved Rate Capability for Lithium-Ion Batteries // J. Power Sources. 2015. V. 280. P. 355–362.https://doi.org/10.1016/j.jpowsour.2015.01.124
  4. Wu Z.L., Xu G.B., Wei X.L., Yang W. Highly-Crystalline Lanthanide Doped and Carbon Encapsulated Li4Ti5O12 Nanosheets as an Anode Material for Sodium Ion Batteries with Superior Electrochemical Performance // Electrochim. Acta. 2016. V. 207. P. 275–283. https://doi.org/10.1016/j.electacta.2016.04.136
  5. Li Y., Gao H., Yang W. Enhancements of the Structures and Electrochemical Performances of Li4Ti5O12 Electrodes by Doping with Non-Metallic Elements // Electrochim. Acta. 2022. V. 409. P. 139993.https://doi.org/10.1016/j.electacta.2022.139993
  6. Ye Z., Zhong F., Chen Y., Zou Z., Jiang C. Unique CNTs-Chained Li4Ti5O12 Nanoparticles as Excellent High Rate Anode Materials for Li-Ion Capacitors // Ceram. Int. 2022. V. 48. P. 20237–20244.https://doi.org/10.1016/j.ceramint.2022.03.303
  7. Lim J., Choi E., Mathew V., Kim D., Ahn D., Gim J., Kang S.H., Kim J. Enhanced High-Rate Performance of Li4Ti5O12 Nanoparticles for Rechargeable Li-Ion Batteries // J. Electrochem. Soc. 2011. V. 158. № 3. P. A275–A280. https://doi.org/10.1149/1.3527983
  8. Zhang H., Yun Zhang H., Huang L., Zhou Z., Wang J., Liu H., Wu H. Hierarchical Carambola-Like Li4Ti5O12-TiO2 Composites as Advanced Anode Materials for Lithium-Ion Batteries // Electrochim. Acta. 2016. V. 195. P. 124-133.https://doi.org/10.1016/j.electacta.2016.02.092
  9. Zhu K., Gao H., Hu G., Liu M., Wang H. Scalable Synthesis of Hierarchical Hollow Li4Ti5O12 Microspheres Assembled by Zigzag-Like Nanosheets for High Rate Lithium-Ion Batteries // J. Power Sources. 2017. V. 340. P. 263–272.https://doi.org/10.1016/j.jpowsour.2016.11.074
  10. Xing L.-L., Huang K.-J., Sheng-Xi Cao S.-X., Pang H. Chestnut Shell-Like Li4Ti5O12 Hollow Spheres for High-Performance Aqueous Asymmetric Supercapacitors // Chem. Eng. J. 2018. V. 332. P. 253–259. https://doi.org/10.1016/j.cej.2017.09.084
  11. Qin W., Liu H., An J., Wen X. Enhanced Li-Ion Battery Performance of TiO2 Nanoparticle-Loaded Li4Ti5O12 Nanosheet Anode Using Carbon Coated Copper as Current Collector // J. Power Sources. 2020. V. 479. P. 229090. https://doi.org/10.1016/j.jpowsour.2020.229090
  12. Kim J.-G., Shi D., Park M.-S., Jeong G., Heo Y.-U., Seo M., Kim Y.-J., Kim J.H., Dou S.X. Controlled Ag-Driven Superior Rate-Capability of Li4Ti5O12 Anodes for Lithium Rechargeable Batteries // Nano Res. 2013. V. 6. P. 365–372.https://doi.org/10.1007/s12274-013-0313-y
  13. Wang Y., Zhou A., Dai X., Feng L., Li J., Li J. Solid-State Synthesis of Submicron-Sized Li4Ti5O12/Li2TiO3 Composites with Rich Grain Boundaries for Lithium Ion Batteries // J. Power Sources. 2014. V. 266. P. 114–120. https://doi.org/10.1016/j.jpowsour.2014.05.002
  14. Yan B.-L., Wang J., Jun D., Song Q.-S., Mu W.-N., Yang T., Mao X.-H., Meng W.-W. Improved Electrochemical Performance for Lithium-Ion Dissolving Synthesis of Nanocomposite with Prominent Specific Surface Area // Electrochim. Acta. 2022. V. 403. P. 139625. https://doi.org/10.1016/j.electacta.2021.139625
  15. Zhang E., Zhang H. Hydrothermal Synthesis of -Li4Ti5O12-TiO2 Composites and Li4Ti5O12 and Their Applications in Lithium-Ion Batteries // Ceram. Int. 2019. V. 45. P. 7419–7426.https://doi.org/10.1016/j.ceramint.2019.01.030
  16. Kozlova A., Uvarov N., Sharafutdinov M., Gerasimov E., Mateyshina Y. In Situ Study of Solid-State Synthesis of Li4Ti5O12–Li2TiO3 and Li4Ti5O12–TiO2 Composites // J. Solid State Chem. 2022. V. 313. P. 123302. https://doi.org/10.1016/j.jssc.2022.123302
  17. Kozlova A., Uvarov N., Ulihin A. Transport and Electrochemical Properties of Li4Ti5O12-Li2TiO3 and Li4Ti5O12-TiO2 Composites // Materials. 2022. V. 15. P. 6079. https://doi.org/10.3390/ma15176079
  18. Mukai K., Kato Y., Nakano H. Understanding the Zero-Strain Lithium Insertion Scheme of Li[Li1/3Ti5/3]O4: Structural Changes at Atomic Scale Clarified by Raman Spectroscopy // J. Phys. Chem. C. 2014. V. 118. P. 2992−2999. https://doi.org/10.1021/jp412196v

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (206KB)
3.

Download (103KB)
4.

Download (118KB)
5.

Download (1MB)
6.

Download (1MB)

Copyright (c) 2023 Т.М. Зима, А.В. Ухина, Н.Ф. Уваров

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies